下一代基于邻近连接的检测如何推进空间蛋白质组学的

下一代基于邻近连接的检测如何推进空间蛋白质组学的

研究人员可以使用 Navinci 的基于邻近连接的创新空间蛋白质组学解决方案组合来可视化和量化蛋白质、它们的相互作用以及细胞和组织中的修饰。

下一代基于邻近连接的检测如何推进空间蛋白质组学的

蛋白质形成巨大、复杂的相互作用网络来介导细胞功能。它们的表达和结合是动态的,细胞响应内部和外部刺激而上调或下调蛋白质水平以及蛋白质复合物的组装和分解。蛋白质功能可以通过翻译后修饰 (PTM)、组织分布模式和亚细胞定位进一步完善。

蛋白质并不是孤立发挥作用的。大多数蛋白质功能是由蛋白质-蛋白质相互作用 (PPI) 和 PTM 介导的。蛋白质相互作用组的一个节点的破坏可能会破坏整个网络的平衡。因此,阐明 PPI 是了解健康和疾病中的细胞信号传导途径以及识别新药物靶点的关键。  

为了充分了解蛋白质功能的复杂性,有必要在其天然环境中观察 PPI,然而,该领域的检测工具历来受到限制。使用免疫共沉淀、蛋白质印迹或 FRET/BRET 测定等技术无法获得蛋白质动态的空间视图,这些技术会破坏细胞和组织结构或天然蛋白质状态。此外,使用传统的免疫荧光 (IF) 和免疫组织化学 (IHC) 方法无法可靠地进行 PPI 研究,这些方法只能确定两个荧光标签是否出现共定位,这可能是分辨率限制的结果,而不是真正的结果。相互作用。

Naveni ®基于邻近连接的检测是下一代技术,可 通过检测和可视化改进蛋白质及其修饰的原位研究:

  • 蛋白质-蛋白质相互作用

  • 同时游离和相互作用的蛋白质

  • 翻译后修饰(例如磷酸化)

  • 蛋白质定位和分布


建立在遗产之上

开发原始邻近连接分析 (PLA) 的先驱者也构建了 Navinci 的平台。Navinci 的产品基于 Naveni ®邻近连接技术,这是一种基于邻近连接的方法,利用寡核苷酸设计和抗体-寡核苷酸缀合物的现代进步,在特异性、灵敏度、易用性和稳定性方面比现有空间蛋白质组学技术具有显着优势。数据解释。

优异的特异性

Naveni ®邻近连接技术使用一对精心挑选的 Navenibodies(与专有寡核苷酸臂缀合的抗体)来直接(通过初级缀合物系统)或间接(通过次级缀合物系统)检测感兴趣的靶标。仅当检测到的蛋白质距离为 40 nm 或更小时,Navanibody 对之间才会发生邻近连接,从而确保 PPI 检测。通过 Navenibody 对对靶标进行双重识别,通过减少抗体交叉反应性引起的非特异性结合来增强特异性。

高灵敏度

专有的 UnFold 检测系统可放大信号,与现有选项相比,可以实现高灵敏度和更高的信噪比。当发生邻近连接时,Navenibodies 上的寡核苷酸探针被激活并杂交以形成 DNA 环。添加聚合酶后,就会启动滚环扩增 (RCA) 反应,从而扩增环序列。这增强了信号强度,因为每个重复序列都可以通过单独的荧光团标记的检测寡核苷酸进行检测,从而导致数百个荧光标签标记单个 PPI。

清晰的目标检测和定量

这些信号可以作为不同的荧光或显色点进行检测,可以通过荧光或明场显微镜(取决于所选的试剂盒格式)进行可视化。使用数字图像分析或视觉解释可以轻松量化结果。

无需人工表达

由于 Naveni ®邻近连接技术,研究人员有望实现比传统 PLA 高达 10 倍的灵敏度提高,从而可以检测内源水平的低丰度蛋白质或难以检测的靶标,而无需实验过度表达,并且只需极少的投入使用珍贵(且昂贵)的抗体。

与现有的组织学工作流程和设备兼容

所有 Navinci 产品均与现有的组织学工作流程和标准组织学设备兼容。可选择明场显微镜和荧光显微镜,无需额外仪器。协议与核染料或组织学染色剂(如苏木精和伊红等)共染色兼容,可在保留的细胞或组织结构内提供目标 PPI 的可视化。


下一代叠氮化物探针详细介绍

下一代叠氮化物探针详细介绍

铜螯合配体设计的最新进展,例如作为稳定Cu(I)氧化态的THPTABTTAA水溶液,提高铜催化的动力学叠氮炔环加成(CuAAC)反应和大大提高炔烃检测的灵敏度。铜螯合
配体也显示出增加生物相容性CuAAC反应通过防止铜离子引起生物损害1。改进CuAAC的下一步反应是发展铜螯合叠氮化合物作为更多反应底物。因为据推测叠氮化铜缔合是CuAAC催化过程中的限速步骤环2,在叠氮化物上引入铜螯合部分报告分子可以显著提高有效的Cu(I)在反应部位的浓度,增强最弱环节中的反应速率加速(2)。一直都是提出螯合叠氮化物的高反应性来自铜叠氮基的快速相互作用发生在形成乙炔化铜,这导致去质子化炔烃在决定速率的步骤3。这一概念被成功地用于使用吡啶基进行CuAAC反应
铜螯合叠氮化物(吡啶甲基叠氮化物)作为基质4-6。然而,吡啶甲基叠氮分子的铜螯合基序不是wan全,需要铜螯合剂(例如THPTA)的存在以实现CuAAC动力学的显著改善反应34。为了提高CuAAC反应在复杂介质中的性能,Click Chemistry Tools开发了新的螯合在其结构中具有完整铜螯合系统的叠氮化物,称为叠氮化物Plus”(3)。这些叠氮化物能够形成强的活性铜络合物,因此被认为是CuAAC反应中的反应物和催化剂。使用这些叠氮化物的类型,CuAAC反应成为双分子反应,并显示出比CuAAC快得多的动力学用常规叠氮化物进行的反应。

下一代叠氮化物探针详细介绍

下一代叠氮化物探针详细介绍

下一代叠氮化物探针详细介绍

下一代叠氮化物探针详细介绍


使用琼脂糖炔烃树脂标记进行CuAAC反应的比较动力学测量(4)实验(3.0毫米硫酸铜(6.0 mM)或没有THPTA配体)使用Cy5叠氮化物PlusCy5吡啶甲基叠氮化物和Cy5双三唑叠氮化物迄今为止报道的最快的铜螯合叠氮化物7。正如所料,吡啶甲基叠氮化物含有不wan全的铜螯合基序表现出相对较慢的反应性,特别是在没有THPTA存在的情况下。动力学数据显示完成铜螯合部分大大增强了反应性,并且重要的是不需要铜螯合部分的存在配体。有趣的是,由Click Chemistry Tools开发的铜螯合叠氮化物在CuAAC反应与迄今为止报道的具活性的铜螯合叠氮化物的比较,双三唑叠氮化物。

下一代叠氮化物探针详细介绍

新的铜螯合叠氮化物可以形成叠氮化物铜络合物,该络合物几乎立即与炔烃反应在稀释条件下。CuAAC反应中这种反应性对低丰度的检测具有特殊价值靶点,提高生物相容性,以及高度期望大大提高S/N比的任何其他应用。

Click Chemistry Tools提供了一系列荧光叠氮化物Plus探针,包括AFDyes、Cy Dyes和经典共轭染料至叠氮化物基团。我们的AFDyes的光物理性质与Alexa Fluor®染料可以匹配。叠氮化物加部分的特殊反应性、AF染料的生物相容性和亮度使这些探针具有特殊的价值。不仅用于低丰度目标的检测,而且用于增加S/N比具有巨大价值的所有其他应用。

下一代叠氮化物探针详细介绍下一代叠氮化物探针详细介绍下一代叠氮化物探针详细介绍