Tide Fluor 5琥珀酰亚胺酯 Cy5的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 5琥珀酰亚胺酯 Cy5的代替品 价格 4245
产品规格

5 mg

产品货号

Tide Fluor 5琥珀酰亚胺酯  Cy5的代替品

产品参数
Ex (nm) 649 Em (nm) 664
分子量 1050.35 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 5WS(TF5WS)系列具有与Cy5相同的光谱特性。 与Cy5探针相比,TF5WS系列具有更强的荧光和更高的光稳定性。 此外,它们的荧光在3到11之间不受pH限制。这些特性使这种新染料家族成为Cy5的优良替代品。 TF5WS标记的肽和核苷酸比用Cy5标记的肽和核苷酸显示出更强的荧光和更高的光稳定性。 与我们的Tide Quencher™5(TQ5)配合使用,可以开发出多种FRET肽和核苷酸来检测蛋白酶和分子信标,从而提高了灵敏度和稳定性。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 5琥珀酰亚胺酯。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 2琥珀酰亚胺酯 FITC的替代物 Cat#2349
Tide Fluo 3琥珀酰亚胺酯 Cat#2346
Tide Fluor 4琥珀酰亚胺酯 ROX和Texas Red的代替品 Cat#2289

Tide Fluor 4酸 ROX和Texas Red的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 4酸 ROX和Texas Red的代替品 价格 2823
产品规格

10 mg

产品货号

Tide Fluor 4酸  ROX和Texas Red的代替品

产品参数
Ex (nm) 578 Em (nm) 602
分子量 562.65 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

TF4被设计为ROX和TexasRed®的优良荧光团替代品。 TF4有(a)较强的荧光强度; (b)较高的结合产率; 和(c)更长的保质期。 此外,它们的荧光在3到11之间不受pH限制。这些特性使这种新染料家族成为ROX和TexasRed®的优良替代品。 与我们的Tide Quencher™4(TQ4)配合使用,可以开发出多种FRET肽和核苷酸来检测蛋白酶和分子信标,从而提高了灵敏度和稳定性。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 4酸  ROX和Texas Red的卓越代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 4胺 ROX和Texas Red的代替品 Cat#2286
Tide Fluor 4马来酰亚胺 ROX和Texas Red的代替品 Cat#2287
Tide Fluor 4炔烃 Cat#2301

Tide Fluor 4胺 ROX和Texas Red的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 4胺 ROX和Texas Red的代替品 价格 2823
产品规格

1 mg

产品货号

Tide Fluor 4胺 ROX和Texas Red的代替品

产品参数
Ex (nm) 578 Em (nm) 602
分子量 946.81 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

TF4被设计为ROX和TexasRed®的优良荧光团替代品。 TF4有(a)较强的荧光强度; (b)较高的结合产率; 和(c)更长的保质期。 此外,它们的荧光在3到11之间不受pH限制。这些特性使这种新染料家族成为ROX和TexasRed®的优良替代品。 与我们的Tide Quencher™4(TQ4)配合使用,可以开发出多种FRET肽和核苷酸来检测蛋白酶和分子信标,从而提高了灵敏度和稳定性。 该TF4产品主要用于标记含有羰基的小分子。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 4胺 ROX和Texas Red的卓越代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 4马来酰亚胺 ROX和Texas Red的代替品 Cat#2287
Tide Fluor 4酸 ROX和Texas Red的代替品 Cat32285
Tide Fluor 4炔烃 Cat#2301

Tide Fluor 4马来酰亚胺 ROX和Texas Red的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 4马来酰亚胺 ROX和Texas Red的代替品 价格 2823
产品规格

1 mg

产品货号

Tide Fluor 4马来酰亚胺  ROX和Texas Red的代替品

产品参数
Ex (nm) 578 Em (nm) 602
分子量 755.86 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

TF4被设计为ROX和TexasRed®的优良荧光团替代品。 TF4有(a)较强的荧光强度; (b)较高的结合产率; 和(c)更长的保质期。 此外,它们的荧光在3到11之间不受pH限制。这些特性使这种新染料家族成为ROX和TexasRed®的优良替代品。 与我们的Tide Quencher™4(TQ4)配合使用,可以开发出多种FRET肽和核苷酸来检测蛋白酶和分子信标,从而提高了灵敏度和稳定性。 该TF4产品用于后半胱氨酸修饰的巯基修饰的寡核苷酸和肽。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 4马来酰亚胺  ROX和Texas Red的代替品 。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 4胺 ROX和Texas Red的代替品 Cat#2286
Tide Fluor 4酸 ROX和Texas Red的代替品 Cat#2285
Tide Fluor 4炔烃 Cat#2301

Tide Fluor 4琥珀酰亚胺酯 ROX和Texas Red的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 4琥珀酰亚胺酯 ROX和Texas Red的代替品 价格 2823
产品规格

5 mg

产品货号

Tide Fluor 4琥珀酰亚胺酯  ROX和Texas Red的代替品

产品参数
Ex (nm) 578 Em (nm) 602
分子量 659.73 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

TF4被设计为ROX和TexasRed®的优良荧光团替代品。 TF4有(a)较强的荧光强度; (b)较高的结合产率; 和(c)更长的保质期。 此外,它们的荧光在3到11之间不受pH限制。这些特性使这种新染料家族成为ROX和TexasRed®的优良替代品。 与我们的Tide Quencher™4(TQ4)配合使用,可以开发出多种FRET肽和核苷酸来检测蛋白酶和分子信标,从而提高了灵敏度和稳定性。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 4琥珀酰亚胺酯  ROX和Texas Red的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 2琥珀酰亚胺酯 FITC的替代物 Cat#2349
Tide Fluo 3琥珀酰亚胺酯 Cat#2346
Tide Fluor 6WS琥珀酰亚胺酯 Cy5.5的代替品 Cat#2294

Tide Fluor 6WS酸 Cy5.5的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 6WS酸 Cy5.5的代替品 价格 2823
产品规格

10 mg

产品货号

Tide Fluor 6WS酸  Cy5.5的代替品

产品参数
Ex (nm) 682 Em (nm) 701
分子量 1031.08 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 6WS(TF6WS)系列具有与Cy5.5,IRDye 700和Alexa Fluor 680相似的光谱特性。它们的荧光在pH值为3到11时不受pH值的影响。这些特性使这种新型染料家族对pH值更稳定更敏感。 在某些情况下,用TF6标记的肽和核苷酸比用Cy5.5,IRDye 700和Alexa Fluor 680标记的肽和核苷酸表现出更强的荧光和更高的光稳定性。与我们的Tide Quencher™6WS(TQ6WS)配对,可以使用多种FRET肽和核苷酸 可开发用于检测蛋白酶和分子信标的方法,具有更高的灵敏度和稳定性。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 6WS酸  Cy5.5的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 6WS马来酰亚胺 Cy5.5的代替品 Cat#2293
Tide Fluor 6WS胺 Cy5.5的代替品 Cat#2292
Tide Fluor 6WS炔烃 Cat#2303

Tide Fluor 6WS胺 Cy5.5的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 6WS胺 Cy5.5的代替品 价格 2823
产品规格

1 mg

产品货号

Tide Fluor 6WS胺  Cy5.5的代替品

产品参数
Ex (nm) 682 Em (nm) 701
分子量 1187.18 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 6WS胺  Cy5.5的代替品 是美国AAT Bioquest生产的Tide Fluor系列染料,Tide Fluor 5WS(TF5WS)系列的光谱特性与Cy5的光谱特性基本相同。与Cy5探针相比,TF5WS家族具有更强的荧光和更高的光稳定性。此外,它们的荧光与pH值无关,pH值为3至11.这些特性使这种新型染料系列成为Cy5的优良替代品。TF5WS标记的肽和核苷酸比用Cy5标记的肽具有更强的荧光和更高的光稳定性。在与我们的Tide Quencher 5(TQ5)配对时,可以开发多种FRET肽和核苷酸,用于检测具有增强的灵敏度和稳定性的蛋白酶和分子信标。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 6WS胺  Cy5.5的代替品 。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

相关产品 货号
Tide Fluor 6WS酸 Cy5.5的代替品 Cat#2291
Tide Fluor 6WS马来酰亚胺 Cy5.5的代替品 Cat#2293
Tide Fluor 6WS炔烃 Cat#2303

Tide Fluor 6WS马来酰亚胺 Cy5.5的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 6WS马来酰亚胺 Cy5.5的代替品 价格 2823
产品规格

1 mg

产品货号

Tide Fluor 6WS马来酰亚胺  Cy5.5的代替品

产品参数
Ex (nm) 682 Em (nm) 701
分子量 1153.20 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 6WS(TF6WS)系列具有与Cy5.5,IRDye 700和Alexa Fluor 680相似的光谱特性。它们的荧光在pH值为3到11时不受pH值的影响。这些特性使这种新型染料家族对pH值更稳定更敏感。 在某些情况下,用TF6标记的肽和核苷酸比用Cy5.5,IRDye 700和Alexa Fluor 680标记的肽和核苷酸表现出更强的荧光和更高的光稳定性。与我们的Tide Quencher™6WS(TQ6WS)配对,可以使用多种FRET肽和核苷酸 可开发用于检测蛋白酶和分子信标的方法,具有更高的灵敏度和稳定性。 该TF6WS产品用于标记巯基修饰的包含半胱氨酸的寡核苷酸和肽。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 6WS马来酰亚胺  Cy5.5的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 6WS酸 Cy5.5的代替品 Cat#2291
Tide Fluor 6WS胺 Cy5.5的代替品 Cat#2292
Tide Fluor 6WS炔烃 Cat#2303

Tide Fluor 6WS琥珀酰亚胺酯 Cy5.5的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 6WS琥珀酰亚胺酯 Cy5.5的代替品 价格 1386
产品规格

1 mg

产品货号

Tide Fluor 6WS琥珀酰亚胺酯  Cy5.5的代替品

产品参数
Ex (nm) 682 Em (nm) 701
分子量 1317.7 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 6WS(TF6)系列具有与Cy5.5,IRDye 700和Alexa Fluor 680相似的光谱特性。它们的荧光在pH值为3到11时不受pH值的影响。这些特性使这种新染料家族对pH值更稳定更敏感。 在某些情况下,用TF6标记的肽和核苷酸比用Cy5.5,IRDye 700和Alexa Fluor 680标记的肽和核苷酸表现出更强的荧光和更高的光稳定性。与我们的Tide Quencher™6WS(TQ6WS)配对,可以使用多种FRET肽和核苷酸 可开发用于检测蛋白酶和分子信标的方法,具有更高的灵敏度和稳定性。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 6WS琥珀酰亚胺酯  Cy5.5的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 2琥珀酰亚胺酯 FITC的替代物 Cat#2349
Tide Fluo 3琥珀酰亚胺酯 Cat#2346
Tide Fluor 7WS琥珀酰亚胺酯 Cy7的代替品 Cat#2333

Tide Fluor 7WS酸 Cy7的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 7WS酸 Cy7的代替品价格 2823
产品规格

10 mg

产品货号

Tide Fluor 7WS酸  Cy7的代替品

产品参数
Ex (nm) 756 Em (nm) 780
分子量 890.96 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 7WS(TF7WS)系列具有与Cy7,IRDye 800和Alexa Fluor 750相似的光谱特性。它们的荧光独立于pH值从3到11。这些特性使这个新染料家族对pH敏感。 分析。 在某些情况下,TF7标记的肽和核苷酸比用Cy7,IRDye 800和Alexa Fluor 750标记的肽和核苷酸表现出更强的荧光性和更高的光稳定性。与我们的Tide Quencher™7WS(TQ7WS)配对,可以使用多种FRET肽和核苷酸 开发用于检测蛋白酶和分子信标的方法,具有更高的灵敏度和稳定性。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 7WS酸  Cy7的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 7WS胺 Cy7的代替品 Cat#2331
Tide Fluor 7WS马来酰亚胺 Cy7的代替品 Cat#2332
Tide Fluor 2酸 FITC的替代物 Cat#2348

Tide Fluor 7WS胺 Cy7的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 7WS胺 Cy7的代替品 价格 2823
产品规格

1 mg

产品货号

Tide Fluor 7WS胺  Cy7的代替品

产品参数
Ex (nm) 756 Em (nm) 780
分子量 1047.07 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 7WS(TF7WS)系列具有与Cy7,IRDye 800和Alexa Fluor 750相似的光谱特性。它们的荧光独立于pH值从3到11。这些特性使这个新染料家族对pH更敏感。 在某些情况下,TF7标记的肽和核苷酸比用Cy7,IRDye 800和Alexa Fluor 750标记的肽和核苷酸表现出更强的荧光性和更高的光稳定性。与我们的Tide Quencher™7WS(TQ7WS)配对,可以使用多种FRET肽和核苷酸 开发用于检测蛋白酶和分子信标的方法,具有更高的灵敏度和稳定性。 该TF7WS产品主要用于标记含有羰基的小分子。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 7WS胺  Cy7的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 7WS酸 Cy7的代替品 Cat#2330
Tide Fluor 7WS马来酰亚胺 Cy7的代替品 Cat#2332
Tide Fluor 2 胺 Cat#2351

Tide Fluor 7WS马来酰亚胺 Cy7的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 7WS马来酰亚胺 Cy7的代替品 价格 2823
产品规格

1 mg

产品货号

Tide Fluor 7WS马来酰亚胺  Cy7的代替品

产品参数
Ex (nm) 756 Em (nm) 780
分子量 1013.08 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 7WS(TF7WS)系列具有与Cy7,IRDye 800和Alexa Fluor 750相似的光谱特性。它们的荧光独立于pH值从3到11。这些特性使这个新染料家族对pH更敏感。在某些情况下,TF7标记的肽和核苷酸比用Cy7,IRDye 800和Alexa Fluor 750标记的肽和核苷酸表现出更强的荧光性和更高的光稳定性。与我们的Tide Quencher™7WS(TQ7WS)配对,可以使用多种FRET肽和核苷酸 开发用于检测蛋白酶和分子信标的方法,具有更高的灵敏度和稳定性。 该TF7WS产品用于硫醇修饰的包含半胱氨酸的寡核苷酸和肽的标记。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 7WS马来酰亚胺  Cy7的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据您的实验调整相应的实验步骤以达到实验的佳效果。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。 参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。 将小瓶侧面的溶液原液离心至小瓶底部。

注意:在开始缀合之前准备DMSO染料溶液。 染料溶液的长期储存可降低染料活性。 任何含有染料的溶液都应避光。 我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。 不要剧烈混合,因为材料可能留在小瓶的两侧。 六小时后,应标记50-90%的胺修饰的寡核苷酸分子。 如果更方便的话,反应可以孵育过夜。 然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

注意:如果离心时间不够长,可能会导致样品丢失。

4.1.4小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要根据您的实验,调整相应的步骤以达到佳的实验效果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of a universal RNA beacon for exogenous gene detection
Authors: Yuanjian Guo, Zhongju Lu, Ira Stephen Cohen, Suzanne Scarlata
Journal: Stem cells translational medicine (2015): 476–482

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 7WS酸 Cy7的代替品 Cat#2330
Tide Fluor 7WS胺 Cy7的代替品 Cat#2331
Tide Fluor 2马来酰亚胺 FITC的替代物 Cat#2350

Tide Fluor 7WS琥珀酰亚胺酯 Cy7的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 7WS琥珀酰亚胺酯 Cy7的代替品 价格 1386
产品规格

1 mg

产品货号

Tide Fluor 7WS琥珀酰亚胺酯  Cy7的代替品

产品参数
Ex (nm) 756 Em (nm) 780
分子量 1076.39 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 7WS(TF7WS)系列具有与Cy7,IRDye 800和Alexa Fluor 750相似的光谱特性。它们的荧光独立于pH值从3到11。这些特性使这个新染料家族对pH更敏感。在某些情况下,TF7标记的肽和核苷酸比用Cy7,IRDye 800和Alexa Fluor 750标记的肽和核苷酸表现出更强的荧光性和更高的光稳定性。与我们的Tide Quencher™7WS(TQ7WS)配对,可以使用多种FRET肽和核苷酸 开发用于检测蛋白酶和分子信标的方法,具有更高的灵敏度和稳定性。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 7WS琥珀酰亚胺酯。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据自己的具体实验对该实验方案进行相应调整。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液(溶液A)

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。将小瓶侧面的溶液原液离心至小瓶底部。

2.2注意:在开始缀合之前准备DMSO染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。不要剧烈混合,因为材料可能留在小瓶的两侧。六小时后,应标记50-90%的胺修饰的寡核苷酸分子。如果更方便的话,反应可以孵育过夜。然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

4.1.4注意:如果离心时间不够长,可能会导致样品丢失。

4.1.5小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

4.1.6注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要修改协议,以便通过多个实验为您的特定应用程序提供佳结果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 2琥珀酰亚胺酯 FITC的替代物 Cat#2349
Tide Fluo 3琥珀酰亚胺酯 Cat#2346
Tide Fluor 8琥珀酰亚胺酯 近红外发射 Cat#2338

Tide Fluor 3马来酰亚胺 Cy3的代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
Tide Fluor 3马来酰亚胺 Cy3的代替品 价格 2823
产品规格

1 mg

产品货号

Tide Fluor 3马来酰亚胺  Cy3的代替品

产品参数
Ex (nm) 551 Em (nm) 563
分子量 961.00 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

Tide Fluor 3WS(TF3WS)系列具有与Cy3基本上相同的光谱特性。 与Cy3探针相比,TF3WS系列具有更好的水溶性。 它已被用来标记水溶性差的疏水性肽。 此外,它们的荧光在3到11之间不受pH限制。这些特性使这种新染料家族成为Cy3的优良替代品。 与我们的Tide Quencher™3(TQ3)配合使用,可以开发出多种FRET肽和核苷酸来检测蛋白酶和分子信标,从而提高了灵敏度和稳定性。 Tide Fluor™3WS马来酰亚胺(TF3WS马来酰亚胺)与硫醇选择性反应。 它可以很容易地用于标记蛋白质,肽和巯基修饰的寡核苷酸。金畔生物是AAT Bioquest的中国代理商,为您提供优质的Tide Fluor 3马来酰亚胺  Cy3的代替品。 

点击查看光谱

实验方案

用Tide Fluor 染料标记氨基修饰的寡核苷酸

以下方案已经过优化,可用于标记200μg(~6 A260 nm单位)的专有寡核苷酸。 您需要根据自己的具体实验对该实验方案进行相应调整。 您的氨基改性OLIGO必须进行处理以去除快速反应并消耗染料SUCCINIMIDYL酯的氨。

1.准备Oligo溶液(溶液A)

1.1将氨基修饰的oligo(~200μg)溶解在四硼酸盐缓冲液(100μL,pH 8.5±0.5)中。

注1:寡核苷酸必须在5’末端用胺基合成。参见Appenxidx 1纯化氨基修饰的寡核苷酸。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将1mg染料SE溶解在100μLDMSO中(如果可能,> 10mg / mL)。将小瓶侧面的溶液原液离心至小瓶底部。

2.2注意:在开始缀合之前准备DMSO染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMSO染料溶液以备将来使用。

 

3.运行共轭反应

3.1在搅拌或摇动(保持反应混合物避光)的同时向染料溶液(B,20-50μL)中加入寡聚物溶液(A,100μL)。

3.2在室温下在旋转器或振荡器上旋转或摇动反应混合物4-6小时。

注意:在第一个小时内每10分钟轻轻涡旋一下小瓶,以确保反应溶液保持充分混合。不要剧烈混合,因为材料可能留在小瓶的两侧。六小时后,应标记50-90%的胺修饰的寡核苷酸分子。如果更方便的话,反应可以孵育过夜。然而,在大多数情况下,过夜孵育不会导致更高的标记效率。

 

4.纯化染料 – 寡糖结合物

4.1通过乙醇沉淀标记的寡核苷酸进行初步纯化

4.1.1将20μL(一般十分之一反应溶液体积)的3M NaCl和300μL冷无水乙醇(通常为两个半反应溶液体积)加入反应小瓶中。

4.1.2充分混合溶液并将其置于-20℃下30分钟。

4.1.3将该溶液在微量离心机中以10,000至15,000×g离心30分钟。

4.1.4注意:如果离心时间不够长,可能会导致样品丢失。

4.1.5小心取出上清液,用冷的70%乙醇冲洗沉淀1-3次并短暂干燥。

4.1.6注意:一些未反应的标记试剂可能在反应过程中沉淀或可能粘在反应瓶的壁上。在离心之前,通过大量涡旋混合将该材料完全再溶解。重新溶解标记试剂可确保沉淀的寡核苷酸少被未反应的标记物污染。

4.2通过HPLC或凝胶电泳进行终纯化

 

使用Tide Fluor 染料标记肽

以下方案已经过优化,用于标记10 mg仅含有一个游离氨基的专利肽(MW~2000)。您需要修改协议,以便通过多个实验为您的特定应用程序提供佳结果。

1.制备肽溶液(溶液A)

1.1将肽(~10 mg)溶解在DMF(~1 ml)中。

注1:肽必须用碱如三乙胺或碳酸钾中和。

注2:避免使用含有伯胺的缓冲液,如Tris,因为它们与胺反应性化合物竞争结合。

 

2.准备染料溶液(溶液B)

2.1通过上下吸移将5mg染料SE溶解在500μLDMF中(如果可能,> 10mg / mL)。

注意:在开始缀合之前准备DMF染料溶液。染料溶液的长期储存可降低染料活性。任何含有染料的溶液都应避光。我们不建议您存储DMF染料溶液以备将来使用。

 

3.运行共轭反应

3.1向染料溶液(B,500μL)中加入肽溶液(A,1mL),搅拌或摇动(保持反应混合物不发光)。

3.2在室温下搅拌反应混合物4-6小时。

 

4.纯化染料 – 肽缀合物

4.1浓缩反应溶液并在C18柱上纯化,得到所需的缀合物。通过HPLC分析级分,合并> 97%纯度的级分并冻干。

注1:HPLC纯化条件:TEAB缓冲液(三乙基碳酸氢铵,0.25mmol,pH = 7.0-8.0)用作缓冲液A,乙腈用作缓冲液B. HPLC在60分钟内从0%B至30%B进行(流速:100毫升/分钟)。

注2:操作过程中避免强光。

 

参考文献

Inhibiting fibronectin polymerization alleviates kidney injury due to ischemia/reperfusion
Authors: Stephanie LK Bowers, Stephanie Davis-Rodriguez, Zachary M Thomas, Valeriia Rudomanova, W Clark Bacon, Alex Beiersdorfer, Qing Ma, Prasad Devarajan, Burns C Blaxall
Journal: American Journal of Physiology-Renal Physiology (2019)

A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Tyler J Perlenfein, Regina M Murphy
Journal: Journal of Biological Chemistry (2017): jbc–M117

Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Charles Olea, Gerald F Joyce
Journal: Molecules (2016): 1310

Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Lang Zhou, Mary Arugula, Christopher J Easley, Curtis Shannon, Aleksandr Simonian
Journal: ECS Transactions (2015): 9–16

Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Juha Rasanen, Matthew J Quinn, Amber Laurie, Eric Bean, Charles T Roberts, Srinivasa R Nagalla, Michael G Gravett
Journal: American journal of obstetrics and gynecology (2015): 82–e1

Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Yuli Wang, Colleen N Phillips, Gabriela S Herrera, Christopher E Sims, Jen Jen Yeh, Nancy L Allbritton
Journal: RSC advances (2013): 9264–9272

Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Xiaoli Sun, Aihua Zhang, Brenda Baker, Luo Sun, Angela Howard, John Buswell, Damien Maurel, Anastasiya Masharina, Kai Johnsson, Christopher J Noren
Journal: ChemBioChem (2011): 2217–2226

FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Frederico Marianetti Soriani, Remo Castro Russo
Journal: Unknown

 

相关产品

产品名称 货号
Tide Fluor 3酸 Cat#2345
Tide Fluor 3胺 Cat#2347
Tide Fluor 2马来酰亚胺 FITC的替代物 Cat#2350

线粒体膜电位荧光探针JC-10 JC-1的卓越代替品-AAT Bioquest荧光染料

上海金畔生物科技有限公司代理AAT Bioquest荧光染料全线产品,欢迎访问AAT Bioquest荧光染料官网了解更多信息。
线粒体膜电位荧光探针JC-10 JC-1的卓越代替品价格 1386
产品规格

5×100 uL

产品货号

线粒体膜电位荧光探针JC-10 JC-1的卓越代替品

产品参数
Ex (nm) 508 Em (nm) 524
分子量 583.34 溶剂 DMSO
存储条件 在零下15度以下保存, 避免光照
产品概述

线粒体膜电位荧光探针JC-10是美国AAT Bioquest研发的用于检测线粒体膜电位的荧光探针是JC-1的替代品。JC-1在许多实验室中被广泛使用,但其水溶性差使得它在某些应用中难以使用。即使在1μM浓度下,JC-1也倾向于在水性缓冲液中沉淀。当需要高染料浓度时,JC-10已被开发为JC-1的替代物。与JC-1相比,我们的JC-10具有更好的水溶性。 JC-10能够选择性地进入线粒体,并随着膜电位的增加可逆地将其颜色从绿色变为橙色。这种性质是由于膜极化时JC-10聚集体的可逆形成导致发射光从520nm(即JC-10单体形式的发射)转变为570nm(即J-聚集体形式的发射)。当在490nm激发时,随着线粒体膜变得更加极化,JC-10的颜色从绿色橙色可逆地变为绿色橙色。使用通常安装在所有流式细胞仪中的过滤器可以检测两种颜色。可以在荧光通道1(FL1)中分析绿色发射,在通道2(FL2)中分析绿色橙色发射。除了用于流式细胞仪外,JC-10还可用于荧光成像。我们已经开发出一种在荧光微孔板平台中使用JC-10的方案。在一些细胞系中,JC-10具有优于JC-1的性能。金畔生物是AAT Bioquest 的中国代理商,为您提供优质的线粒体膜电位荧光探针。

点击查看光谱

实验方案

JC-10的分析方案

概述

准备含有测试化合物的细胞

添加JC-10工作溶液(100μL/孔用于96孔板或25μL/孔用于384孔板)

在室温或37 ℃孵育1小时

在Ex读取荧光强度 / Em = 490 / 525nm和540 / 590nm

注意:以下是我们推荐的活细胞方案。 该协议仅提供指南,应根据您的特定需求进行修改。

 

操作步骤

1.准备JC-10工作溶液:

1.1每瓶DMSO原液(100μL,2 mg / mL,3 mM)只能使用一次。任何未使用的小瓶应储存在<-20℃。注意:避免反复冻融循环,并避光.

1.2准备1X JC-10工作溶液:在实验当天,解冻一份JC-10 stockolution到室温。在Hanks和20 mM Hepesbuffer(HHBS)或您选择的缓冲液(pH 7-8,含0.02%Pluronic F-127)中制备10至30μM1X工作溶液。通过votexing将它们混合均匀。注意:对于某些细胞系,pH值为8的工作溶液可能会阻止JC-10泄漏。

2.用荧光酶标仪进行JC-10检测:

2.1用测试化合物处理细胞一段所需的时间(例如,Jurkat细胞可以用喜树碱处理4-6小时)以诱导细胞凋亡。 对于空白孔(没有细胞的培养基),加入相应量的化合物缓冲液。

2.2将100μL/孔/ 96孔板或25μL/孔/ 384孔板的JC-10工作溶液(来自步骤1.2)加入到细胞板中。

2.3将JC-10加载板在37 oC,5%CO2培养箱中孵育15-60分钟。

注意:适当的孵育时间取决于所使用的单个细胞类型和细胞浓度。优化每个实验的孵育时间。

2.4监测Ex / Em = 490/525 nm(FITC通道)和540/590 nm(TRITC通道)的荧光变化,进行比率分析。

可选:从板上取下JC-10工作溶液; 在分析之前,将100μL/孔/ 96孔板或25μL/孔/ 384孔HHBS板加回到细胞板中。

3.用荧光显微镜或流式细胞仪进行JC-10检测:

3.1用测试化合物处理细胞一段所需的时间(例如,Jurkat细胞可以用喜树碱处理4-6小时)以诱导细胞凋亡。

3.2离心细胞,每管取1-5×105个细胞。

3.3将细胞重悬于500μLJC-10工作溶液中(来自步骤1.2)。

3.4在室温或37°C,5%CO2培养箱中孵育10至30分钟,避光。

注意:适当的孵育时间取决于所使用的单个细胞类型和细胞浓度。优化每个实验的孵育时间。

3.5使用荧光显微镜(使用FITC和TRITC过滤器)或流式细胞仪(使用FL1和FL2通道)监测Ex / Em = 490/525 nm和540/590 nm处的荧光变化。可选:移除JC-10工作 从板上解决; 在荧光显微镜下分析之前,将100μL/孔/ 96孔板或25μL/孔/ 384孔HHBS板加回到细胞板中。

 

参考文献

JC-10™ has been used to study many biologically significant processes across several key disciplines. To list a few, JC-10™ has been used to investigate topics such as mitochondrial membrane potential, cytotoxicity, cell viability, oxidative stress, cancer metastasis, apoptosis, signal transduction, mitochondrial fission and induced pluripotent stem cells (iPSCs). 

Below, you may find a small sampling of specific JC-10™ applications. To inquire about a potential application of JC-10™, or to consult with our fluorescent dye specialists, please contact us at support@aatbio.com or 1-800-990-8053.

High-content assays for hepatotoxicity using induced pluripotent stem cell–derived cells.
Researchers use JC-10™ to monitor mitochondrial depolarization as an indication of hepatotoxicity and oxidative stress in induced pluripotent stem cell-derived cells, with the ultimate goal of designing a reliable, high-content and imaging-based in vitro toxicity assay. 

High-Content High-Throughput Assays for Characterizing the Viability and Morphology of Human iPSC-Derived Neuronal Cultures
JC-10™ was used to study neurons derived from induced pluripotent stem-cells. Since JC-10™ will accumulate in the mitochondria of viable cells, it was used to determine cell viability in a high-throughput assay context.

Anticancer Activity of New Synthetic α-Methylene-δ-Lactones on Two Breast Cancer Cell Lines
Researchers chose JC-10™ to investigate mitochondrial membrane potential and membrane integrity in cells treated with natural products, such as α-Methylene-δ-Lactones, with the goal of developing new treatments for breast cancer.

Tetrandrine protects mouse retinal ganglion cells from ischemic injury.
JC-10™ was used in flow cytometry to study mitochondrial membrane potential (ΔΨm) in primary cultured retinal ganglion cells, as an extension of the field of drug discovery into prevention of ischemic injury. 

Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice
In a study of human cancer cells, JC-10™ was employed to track cellular apoptosis as a function of mitochondrial membrane potential, and consequently, mitochondrial activity. Researchers were interested in the possible anesthetic properties of midazolam for anticancer drug delivery.

Mitochondrial proteomics with siRNA knockdown to reveal ACAT1 and MDH2 in the development of doxorubicin-resistant uterine cancer
JC-10™ was used by researchers for the purposes of drug discovery. In particular, researchers were interested in finding new treatments for doxorubicin-resistant uterine cancer, using JC-10™ to monitor mitochondrial membrane potential and validate cell viability results. 

Cold exposure lowers energy expenditure at the cellular level
Researchers used JC-10™ to investigate the relationship between temperature and cellular activity. In particular, researchers wanted to explore if cold temperature acts as a stressor on mitochondrial membrane potential, with regards to the oxidative phosphorylation process which generates ATP.

Susceptibility of gametes and embryos of the eastern oyster, Crassostrea virginica, to Karenia brevis and its toxins
JC-10™ was used in the study of sperm viability, fertilization successs and embryonic survival of Crassostrea virginica. Specifically, JC-10™ was used to quantify mitochondrial membrane potential in sperm cells and to determine possible toxicity effects of algal blooms.

Calmodulin antagonists induce cell cycle arrest and apoptosis in vitro and inhibit tumor growth in vivo in human multiple myeloma
JC-10™ was used by researchers to study cell cycle and apoptosis in human multiple myeloma. JC-10™ functioned as a probe for the detection of mitochondrial membrane potential depolarization, which was crucial to the study of caspase activated apoptosis.

Activation of the mitochondrial apoptotic pathway produces reactive oxygen species and oxidative damage in hepatocytes that contribute to liver tumorigenesis
Researchers were interested in the pathways involved with liver tumorigenesis. To that end, they used JC-10™ to study activation of apoptotic pathways related to changes in mitochondrial membrane potential, with the ultimate goal of discovering if antioxidant therapy might help suppress liver carinogenesis.