nvigen纳米药物靶向和递送技术介绍

nvigen纳米药物靶向和递送技术介绍

NVIGEN 纳米颗粒药物输送技术建立在创新的纳米颗粒配方平台以及我们在调整纳米颗粒尺寸、形状和表面特性以促进特定生物医学应用方面的专业知识之上。

我们的纳米颗粒药物输送技术考虑到表面电荷、疏水性/亲水性和官能团的微妙平衡,为纳米颗粒提供最佳的表面化学性质。 NVIGEN 纳米颗粒药物递送平台的表面分子被装饰为刷层,为纳米颗粒表面上的功能分子或配体提供灵活性,以更好地接近其目标。

nvigen纳米药物靶向和递送技术介绍

NVIGEN MyQuVigen 荧光磁性纳米颗粒在肿瘤组织(绿色)内的新血管系统(血管,红)中成像。纳米颗粒很好地分散在血流中,荧光信号平滑地勾勒出曲折的肿瘤新血管系统,包括直径只有几微米的非常细的毛细血管。

凭借均衡的表面刷层,NVIGEN 纳米颗粒药物输送技术可以通过简单地控制纳米颗粒尺寸来精确设计纳米颗粒循环半衰期。该特性可用于优化药物药代动力学。采用NVIGEN纳米颗粒给药技术制备的长循环纳米颗粒表现出强的EPR(增强渗透性和保留)效应,在小鼠异种移植模型中单剂量静脉注射后肿瘤区域保留超过30天,持续时间远长于3的保留时间大多数其他纳米颗粒药物的时间为 5 天。

NVIGEN纳米颗粒药物递送平台的长血循环纳米颗粒用于递送肽类药物。使用小鼠异种移植模型证明了增强的癌症靶向性和加速的治疗效果。

nvigen纳米药物靶向和递送技术介绍nvigen纳米药物靶向和递送技术介绍

NVIGEN 纳米颗粒药物递送平台基于所有经过临床验证的成分材料。纳米颗粒的尺寸、形状、表面和载药量都可以进行调整,以实现最佳的药物药代动力学、生物分布以及癌症靶向和治疗功效。此外,成分材料(例如适用于磁共振成像的超顺磁性氧化铁纳米颗粒成分)固有的信号生成特性,使得同一纳米颗粒能够同时进行诊断、治疗和后续评估。 NVIGEN 纳米颗粒药物递送技术代表了制备有效的抗癌药物的理想工程平台。

nvigen纳米药物靶向和递送技术介绍

Mag-磁性、FMN-荧光磁性纳米颗粒、RAD-药物参考、RGD-靶向药物。与 MagVigen 纳米珠结合的靶向药物导致肿瘤在 15 天时缩小并消失(蓝色)。没有药物的参考中的肿瘤继续生长并突破观察窗(棕色)。外磁力作用下的靶向药物积累得更多更快,五天后肿瘤消失(绿色)

应用:

  • 优化药物药代动力学

  • 增强癌症药物的靶向性、疗效并减少副作用

  • 克服抗体药物偶联物的药物数量限制

小分子药物聚乙二醇化方法

小分子药物聚乙二醇化方法

聚乙二醇(PEG)是乙二醇的聚合物,相对分子质量为200~8000或以上。由重复的乙氧基组成,不仅具有良好的水溶性,而且易溶于苯、乙腈、乙醇等有机溶剂。 PEG分子的特点如下:

①低分散性:相对分子质量(Mr)小于5000的分散性为1.01,分子量(Mr)大于5000的分散性为1.1,具有较宽的范围。分布和更大的选择性;
②两亲性:既溶于有机溶剂又溶于水;
③无毒:研究表明大于1000的聚乙二醇无毒,已用于各种食品、化妆品和药品中;
④ 可生物降解:聚乙二醇在体内直接消除,结构不发生任何变化。分子量小于20000的代谢物可以通过肾脏代谢,较大分子可以通过消化系统代谢。

聚乙二醇化药物的特点

大多数蛋白质药物、多肽药物、化学药物都伴有一些自身无法克服的问题,如作用时间短、免疫原性大、副作用大等。 PEG呈中性、无毒,具有很好的理化性质和良好的生物相容性,是美国FDA批准用于体内注射药物的少数化学品之一。因此,通过化学方法将活化的聚乙二醇与蛋白质、肽、小分子药物和脂质体连接,即对药物分子进行聚乙二醇化,可以有效提高药物分子的生物半衰期,降低其毒副作用。可以减少影响。其中,研究最多的是蛋白质的PEG修饰。与未修饰的蛋白质药物相比,
聚乙二醇化的蛋白质药物具有以下优点:

(1)生物活性更强;
(2)脂质体对肿瘤有更强的被动靶向作用;
(3)较长的半衰期;
(4)降低最大血药浓度;
(5)血药浓度轻微波动;
(6)酶促降解少;
(7)免疫原性和抗原性较低;
(8)毒性较小;
(9) 溶解性更好;
(10)减少用药次数;
(11)提高患者依从性,改善生活质量,降低治疗费用。

小分子药物聚乙二醇化方法

聚乙二醇化方法

鉴于聚乙二醇化对药物性质的巨大影响,聚乙二醇化已成为药物开发和提高已上市药物疗效的重要途径。因此,如何进行PEG化就成为重中之重。

首先,需要选择合适的PEG进行分子修饰。修饰剂的选择主要考虑以下5个方面:

(1)
选择PEG相对分子质量(Mr)的确定应同时考虑生物活性和药代动力学因素。应用太大的聚乙二醇化蛋白药物会导致药物失去大部分生物活性。当使用低Mr(<20000)聚乙二醇化蛋白质药物时,修饰后的蛋白质药物与原型药物相比,生物活性和药代动力学性质没有本质变化。因此,一般选择40000-60000范围内的PEG作为修饰。
(2)修饰位点的选择应基于对蛋白质构效关系的分析。选择不与受体结合的蛋白质表面残基作为修饰位点,使得修饰后的蛋白质能够保留较高的生物活性。常见的修饰位点有氨基修饰、羧基修饰和硫醇修饰;
(3) PEG修饰剂与氨基酸反应的特异性取决于修饰剂的化学性质和修饰位点的选择。
(4)PEG修饰剂的水解稳定性和反应活性取决于活化基团的稳定性和修饰反应条件尤其是pH值的控制。一般来说,PEG修饰剂反应活性高,因此稳定性较差,容易水解;
(5)聚乙二醇化蛋白的活性、毒性和抗原性与聚乙二醇修饰的大小和类型有关。一般情况下,随着PEG相对分子量的增加,蛋白质活性的损失逐渐增加。此外,不同的PEG修饰剂对蛋白质生物活性的影响也不同。

其次,激活PEG。聚乙二醇化蛋白质主要是通过PEG末端羟基与蛋白质氨基酸残基反应实现的。 PEG末端羟基活性较差,必须用活化剂活化才能在体内温和条件下共价修饰蛋白质。常见的PEG活化方法有:

(1)羰基二咪唑法:该方法首先用于多肽的合成,并已被证明是形成酰胺键的良好试剂。

小分子药物聚乙二醇化方法
羰基二咪唑活化PEG

(2)N-羟基琥珀酰亚胺法: (a)活化N,N-琥珀酰亚胺碳酸酯。该反应需要在无水条件下进行。 (B) 活化琥珀酸酐和N-羟基琥珀酰亚胺。该方法得到的聚乙二醇具有较高的活性。最好在非水环境中进行蛋白质偶联。

小分子药物聚乙二醇化方法
N,N-琥珀酰亚胺碳酸酯活化的 PEG

小分子药物聚乙二醇化方法
琥珀酸酐和 N-羟基琥珀酰亚胺活化的 PEG


(3)氰尿酰氯法:氰尿酰氯又称三氯嗪(TST),是一种对称杂环化合物。 David 使用 TST 与聚乙二醇上的羟基发生反应。只有一个氯原子被取代,其他氯原子与蛋白质氨基反应。

小分子药物聚乙二醇化方法
氰尿酰氯活化的 PEG

(4)光气活化法:Kurfuerst提到了由N-羟基琥珀酰亚胺钾盐、硝基苯酚、三氯苯酚与光气反应制备活化聚乙二醇的方法。激活分为两个步骤,如下图所示。

小分子药物聚乙二醇化方法
PEG的光气活化

(5)聚乙二醇对蛋白质半胱氨酸残基进行化学修饰。磺基特异性修饰的常见PEG活化方法如下图所示。

小分子药物聚乙二醇化方法
硫醇激活的 PEG 的特异性修饰

(6)连接酶位点的聚乙二醇:除了传统的化学修饰方法外,还可以通过酶催化等其他方式实现修饰,以G-TGase为例。

小分子药物聚乙二醇化方法
酶联聚乙二醇


最后选择合适的蛋白质氨基酸残基位点或小分子药物位点进行位点特异性修饰。用活化的PEG对合适的蛋白质氨基酸残基进行位点特异性修饰可以提高天然蛋白质的功效。蛋白质药物PEG修饰技术最大的问题是无法实现位点特异性修饰,修饰产物不均一,给分离纯化带来很大困难,也极大阻碍了临床应用。根据蛋白质的氨基酸性质和PEG衍生物的特点,科学家在使用PEG进行修饰时,选择不与受体结合的蛋白质表面残基作为修饰位点。这样,修饰后的蛋白质药物除了具有聚乙二醇化带来的优异性能外,还具有较高的生物活性。目前上市药物中常见的修饰位点包括氨基、羧基、磺基、二硫基、糖基以及非极性氨基酸的一些特定位置。

抗体药物制备过程中最需要注意的事项有哪些?

抗体药物制备过程中最需要注意的事项有哪些?

抗体偶联药物是通过连接体将针对特定抗原的单克隆抗体与小分子细胞药物连接而成。它既具有传统小分子化疗的强大杀伤作用,又具有抗体药物的肿瘤靶向特性。自从第一个ADC(Mylotarg)被批准用于治疗CD33阳性急性髓系白血病以来,已经开发了几种用于治疗癌症的ADC。

从选择合适的抗体到最终产品,ADC的整个开发过程是一项艰巨且富有挑战性的任务。临床药理学是药物开发最重要的工具之一。使用该工具有助于找到产品的最佳剂量,从而保持产品在患者群体中的安全性和有效性。与其他小分子或大分子通常仅测量一个部分/代谢物进行药代动力学分析不同,ADC 需要测量多个部分来表征其 PK 特性。因此,深入了解 ADC 的临床药理学对于在患者群体中选择安全有效的剂量至关重要。

ADC 药代动力学概述

药代动力学是临床药理学和现代药物开发重要的一部分。药代动力学研究的主要目的是获得吸收、分布容积、清除率、半衰期、多次给药后的蓄积、各种疾病状态以及年龄、体重和性别对药物药代动力学的影响。信息。这些药代动力学参数可用于为患者设计最佳给药方案。

应该认识到,与小分子和治疗性蛋白(抗体/融合蛋白)不同,ADC 的 PK 非常复杂,因为 ADC 由多种成分组成。不仅要考虑单克隆抗体的PK,还要考虑细胞毒性分子的PK以及结合的物理和化学性质。由于单克隆抗体的分子量占90%以上,ADC不同成分的PK受其PK影响较大。总抗体 (ADC+mAb) 的 PK 特性提供了 ADC 稳定性和完整性的最佳评估。缀合物和偶联位点在维持 ADC 的稳定性和 PK 方面也发挥着重要作用。下表列出了 FDA 批准的 ADC 的特性和 PK。

ADC的药代动力学特征

一般来说,给药后体内会涉及四个过程。这些过程是吸收、分布、分解代谢和清除。

吸收

大多数抗体通常通过静脉注射或输注的方式给予,也可以通过皮下途径给予抗体。然而,对于ADC来说,目前的给药途径是静脉注射或输注。由于对细胞毒性有效负载的反应和细胞毒性物质的局部沉积,SC 给药可能不适合 ADC。

分配

药物在体内的分布可以用分布容积来描述。由于其大小和极性,抗体和 ADC 的分布通常仅限于血管和细胞间隙。

ADC的初始分布一般局限于血管内,分布体积一般等于血容量。随后,ADC 可以分布到间隙空间。此外,ADC的分布也会受到靶抗原表达和内吞作用的影响。

ADC在同一组织中的分布和积累可产生不良(毒性)药理作用,这是由于摄入ADC后细胞毒性药物或代谢物的释放。

分解代谢

ADC体内分解或代谢过程包括体内抗体分解代谢和小分子药物代谢。 ADC 在到达肿瘤细胞之前在细胞(不可切割连接体)或循环系统(可切割连接体)中释放效应分子。未结合的抗体和抗体片段沿着抗体的代谢途径,通过酶水解产生氨基酸,并被人体重复利用。

ADC裂解或分解代谢后可能形成的游离小分子药物/带有氨基酸残基的小分子药物/连接体的小分子药物代谢物将进一步经过肝脏CYP450酶代谢,潜在的药物也可能发生相互作用。

除了ADC本身的性质外,抗原表达、受体/细胞密度、FcRn介导的循环、Fcγ相互作用、受体介导的内吞作用、免疫原性等都会影响ADC的分解代谢。

清除

ADC也通过分解代谢和排泄被消除。 ADC通过特定途径进入溶酶体后可被降解,与靶标结合,释放出小分子药物后从体内清除;它也可以通过非特异性胞饮作用被清除,这涉及到 FcRn 的回收过程。

ADC、抗体、分子量较大的肽和氨基酸片段不能通过肾小球过滤和排泄,而是以氨基酸的形式被重新吸收和利用。游离的小分子药物、分子量较小的肽和氨基酸连接的小分子药物、分子量较小的抗体片段等可通过肾小球滤过排出体外。同时,小分子药物和代谢物也可以通过酶代谢消除或通过转运蛋白排泄到粪便中。

ADC 生物分析

ADC有多种成分,要表征这些成分的PK特性,需要几种分析方法,如下所述:

1.ELISA免疫分析测定结合物和总抗体的动力学曲线。
2.TFC-MS/MS,定量游离药物/代谢物。
3.高分辨质谱用于体内药物抗体比分析。

此外,有两种类型的 ELISA 免疫测定用于定量测量 ADC 分析物:第一种类型的分析测量总抗体,即 DAR 大于或等于零的 ADC。第二种分析方法测量药物结合抗体,定义为 DAR 大于或等于 1 的 ADC。

其他分析方法有尺寸排阻色谱法 (SEC) 和疏水相互作用色谱法 (HIC)。 SEC 是常用的液相色谱 (LC) 技术,用于确定聚集抗体的数量。该技术也可用于 ADC。尽管 HIC 是一种用于蛋白质分离、纯化和表征的传统技术,但该技术现在正用于 ADC 表征和分析。

细胞毒性有效负载

ADC细胞毒性有效负载应具有以下特征:

1.分子的有效负载应该小,缺乏免疫原性,并且可溶于水缓冲液,以便它们可以很容易地偶联。
2.细胞毒有效负载应具有适当的脂溶性。
3.有效负载的目标应位于小区内部。
4.有效负载在血液中应稳定。

目前,常用的细胞毒性药物效应分子有微管抑制剂(auristatins/maytansinoids)、DNA损伤剂(卡利刹霉素/duocarmycins/anthracyclines/吡咯并苯二氮卓二聚体)和DNA转录抑制剂(Amatoxin/Quinolinealkaloid(SN-38))。已批准上市的几款ADC药物总共使用了6种不同的小分子药物,其中3款ADC药物使用MMAE作为结合药物,2种药物使用卡利车霉素作为结合药物。 MMAF、DM1、SN-38、Dxd也被成功使用。

药物抗体比(DAR)

DAR 是指单个单克隆抗体上附着的有效负载分子的平均数量,通常在 2 至 4 个分子之间。在极少数情况下,通过使用亲水连接器有效负载(例如 Enhertus 和 Trodelvys)可以安全地实现高达 8 的 DAR。 DAR对于ADC的疗效判定非常重要,DAR可能影响药物在循环中的稳定性、PK以及ADC的毒性。

研究表明,与DAR值<6的ADC相比,DAR值高(7-14)的ADC具有更快的清除率和较低的体内疗效。 DAR 值及其对稳定性和 PK 的影响还取决于偶联位置和连接子的大小。

通常对赖氨酸或半胱氨酸进行修饰来生产ADC。赖氨酸是连接底物和抗体常用的氨基酸残基之一。赖氨酸通常存在于抗体表面,因此很容易偶联。

其他氨基酸如半胱氨酸、酪氨酸也可以修饰,利用马来酰亚胺修饰半胱氨酸合成ADC如Adcetriss、Polivys、Padcevs、Enhertus、Trodelvys和Blenreps。

链接器

Linker是ADC重要的组成部分,决定着ADC的药物释放机制、PK、治疗指标和安全性。早期的 ADC 连接体化学不稳定,例如二硫化物和腙。这些连接体在循环中不稳定,半衰期短,通常为一到两天。最新一代的连接体在体循环中更加稳定,例如肽和葡萄糖醛酸连接体。最常见的两种连接器如下:

可切割接头

裂解接头对细胞内环境敏感,通过细胞内分解代谢和解离的联合作用释放游离的效应分子和抗体,如酸裂解接头和蛋白酶裂解接头。它们通常在血液中稳定,但会在低 pH 值和富含蛋白酶的溶酶体环境中快速裂解,释放效应分子。此外,如果效应分子可以跨膜,则可以通过发挥潜在的旁观者效应来消除肿瘤。

不可切割的接头

不可切割连接子是新一代连接子。与可裂解接头相比,它具有更好的血浆稳定性。由于不可切割接头可以比可切割接头提供更高的稳定性和耐受性,因此这些接头可以减少脱靶毒性,并提供更大的治疗窗口。

免疫原性

在针对8种ADC的11项临床试验中,ADA的基线发生率在1.4%至8.1%之间,基线后ADA的发生率在0-35.8%之间。这些值在治疗性单克隆抗体的范围内。一般来说,血液肿瘤患者中 ADC 的 ADA 发生率低于实体瘤患者;大多数 ADA 都是针对 ADC 的单克隆抗体结构域。此外,在大多数患者中,这些 ADC 的半抗原样结构不会比治疗性单克隆抗体带来更大的免疫反应风险。

ADC药代动力学模型

应用模型方法可以整合PK、疗效和安全性数据,满足ADC药物研发不同阶段的需求,如:靶点选择、抗体亲和力、接头稳定性、动物对人的外推、剂量选择和调整、ER由于ADC具有多种清除途径(解离和分解代谢)以及多种分析物复杂的PK特性,其动力学模型也较为复杂。

不同的型号有不同的应用。例如,二室模型和PBPK模型可以用来描述ADC的稳定性特征,参数包括清除率、解离率和代谢率等。目前ADC药代动力学研究主要采用非房室模型、群体药代动力学模型、基于机制的模型、基于生理的模型等。

概括

在ADC药物的研发过程中,临床药理学起着非常重要的作用。通过生物分析技术的不断发展,全面地阐明ADC药物的PK/PD特性,对于推动更多低毒、高效的ADC药物的研发具有重要意义。重要的。 ADC药物也将在肿瘤治疗领域展现出更强大的优势。

单克隆抗体-药物稳定性优化

单克隆抗体-药物稳定性优化

单克隆抗体药物是生物制药的一个重要分支,因其高靶向性和特异性而受到广泛关注。随着单克隆抗体技术的不断发展,抗体药物在疾病的预防、诊断和治疗中发挥着举足轻重的作用。

抗体药物作为合成蛋白的天然特性,在生产、储存和体内使用过程中容易受到体外和体内复杂环境的物理和化学影响。并发生多种理化性质的变化,导致免疫原性增加、半衰期缩短,甚至失效。

因此,如何提高抗体药物的稳定性、降低免疫原性、延长半衰期、提高其体内生物利用度是抗体药物应用中急需解决的关键问题。

1.抗体分子结构及稳定性研究意义

抗体是指机体产生的、能与抗原特异性结合的免疫球蛋白。抗体由 B 淋巴细胞转化的浆细胞分泌和产生。每个B淋巴细胞系只能产生一种针对特定抗原决定簇的特异性抗体。这种由单一细胞系产生的抗体称为单克隆抗体(mAb)。

常规单克隆抗体分子由两条重链(HC)和两条轻链(LC)通过链间二硫键连接形成“Y”形结构,可分为三个功能部分:两个抗原结合片段(Fab) 和晶体区域 (Fc)。两个Fab通过铰链区与Fc连接,构象变化比Fc更加灵活。 Fab 的 Fv 区由重链和轻链的一对可变区(VH 和 VL)组成。通常,Fv区经过糖基化修饰,这决定了抗体如何与适应性免疫和体液免疫系统中的其他成分相互作用。

研究发现,某些单克隆抗体药物虽然在体外实验中表现出良好的药物活性,但进入临床试验阶段时会遇到体内活性降低的问题。因此,在药物研发初期必须考虑药效学问题。

目前提高蛋白质热稳定性的方法主要有非共价修饰、化学修饰、添加蛋白质稳定剂、蛋白质工程等。在液态时,通过矿化技术直接在蛋白质表面形成磷酸钙矿化壳,提高蛋白质稳定性。

可见,在保证抗体的亲和力和表达量不受到太大影响的同时,大程度地提高其稳定性对于抗体药物的研发具有重要的现实意义。

单克隆抗体-药物稳定性优化
IgG抗体的条形图和分子结构

2.抗体稳定性评估方法

生物技术产品的稳定性评估通常包括生物活性分析、分子结构和纯度分析(包括降解产物的定量检测)以及相关参数(如外观、pH值等)的监测。

结合以上数据评价样品的热稳定性、聚集性和分子间力的大小。

在热稳定性的评价和分析中,差示扫描量热法(DSC)是目前常用的测量蛋白质热稳定性的方法,该方法不仅可以获得熔化温度,还可以获得与熔化相关的焓、熵和自由能。

此外,在蛋白质溶解度预测方面,研究人员相继提出了交叉作用色谱(CIC)、亲和捕获自相互作用-纳米粒子光谱(AC-SINS)或克隆自相互作用-生物层干扰(CSI)-BLI)等技术也取得了一定的进展。

这些方法评估低蛋白质浓度下单克隆抗体交叉或自身相互作用的可能性,以预测高浓度下单克隆抗体的特性。

随着计算机辅助设计在生物大分子开发中的应用,对于晶体结构不确定的分子,可以利用大量的建模和仿真软件来预测抗体-抗原复合物的三维结构。不同的力场也可用于分子动力学 (MD) 模拟 3,以获得有关结合相互作用、稳定性的更详细信息,并更轻松地计算非共价键能(疏水、静电、非极性和结合能) 。

3.稳定性修改方案

3.1 抗体分子结构的修饰

基于抗体分子化学修饰位点的结构修饰一直是稳定性优化的重要方向。其中,抗体CDR区的脱酰胺基可能会导致抗原结合功能的丧失。

研究已逐渐阐明脱酰胺和化学修饰的机理及其作用。而且研究证实Gln的脱酰胺速率比Asn慢很多。因此,去除脱酰胺位点或通过将Asn突变为Gln来降低脱酰胺作用的概率被视为解决方案4。

3.2 生产工艺优化

研究指出,抗体在过酸或过碱条件下会以不同方式降解。在用于静脉注射的pH 6.8的免疫球蛋白(IGIV)制剂中,可以通过添加麦芽糖稳定剂来改善这种由pH引起的不稳定性。

表面活性剂通常添加到单克隆抗体药物制剂中,以减少疏水区域的暴露,或通过竞争吸附位点来减少蛋白质相互作用和界面诱导的聚集。其中,常用的非离子表面活性剂有聚山梨酯20和聚山梨酯80 7。

此外,某些氨基酸经常被用作赋形剂以防止聚集。常用的精氨酸(Arg)可以增加蛋白质的溶解度并保护它们免受光和高温引起的聚集。

改进抗体药品的储存或包装通常更经济。迄今为止,防止蛋白质与容器表面相互作用的方法是对表面进行涂层,即表面钝化。

涂层大致可分为两类:单层涂层(较常用)和多层涂层(可控性较差)。更常用的涂层聚合物包括乙二醇或环氧乙烷11。此外,使用极性或中性电荷的聚合物涂层也能够减少蛋白质吸附12。

4。结论

治疗性单克隆抗体药物是目前生物医药领域的研发热点,在此基础上,单链抗体(SCFV)、单域抗体、抗体药物偶联物(ADC)等药物应用于多种器官系统疾病相继获批上市。

如何在不改变药物靶向性、平衡效应和免疫原性的情况下提高药物的稳定性是一个至关重要的问题。并尽可能延长药物半衰期,维持有效血药浓度。抗体稳定性受环境、配方、自身结构、生产操作等多种因素影响,有效评价抗体稳定性是个体化改造的前提。

稳定性评价不应仅根据降解产物的有无或稳定分子的浓度来定义,而应包括以下三个方面:物理稳定性研究的评价应涵盖聚集体和碎片的数量以及结构;化学稳定性研究应关注蛋白质降解;生物稳定性研究应确保单克隆抗体对靶标的活性与其物理和化学稳定性一致。

深入探讨影响抗体稳定性的因素和评价方法,将有助于抗体药物的合理优化和新药的研发。

全球ADC药物——光免疫疗法能否突围?

全球ADC药物——光免疫疗法能否突围?

近年来,抗体药物偶联物(ADC)以其优异的临床表现和市场回报受到广泛追捧。并以更高的热情在全球范围内保持发展。 ADC药物由三部分组成:抗体、效应分子(Payload,通常是细胞毒剂)、连接体。与传统药物相比,ADC药物在提高靶向性、减少副作用方面具有明显优势。

1.全球ADC上市及研究现状

截至2021年4月2日,全球有432种ADC药物在研。其中大部分处于临床前阶段,有108个产品处于临床阶段。

全球ADC药物进展阶段情况

全球ADC药物——光免疫疗法能否突围?

自2000年推出第一个ADC产品Mylotarg(吉妥珠单抗奥佐米星)以来,目前全球已有11个ADC产品获得批准。

2.治疗领域及靶点

在治疗领域,ADC药物的主要研发方向集中在抗肿瘤。

全球ADC药物——光免疫疗法能否突围?

其余治疗领域几乎没有竞争对手,但不乏主要的潜在产品。艾伯维正在开发的ABBV-3373,是阿达木单抗和糖皮质激素受体调节剂(GRM)形成的ADC药物,用于潜在治疗类风湿性关节炎(RA)。根据其2020年6月发布的IIa期实验数据,ABBV-3373可以在第12周带来比阿达木单抗更显着的DAS28 CRP评分改善。其安全性与已知的阿达木单抗的安全性相似。

在靶点选择方面,与已经上市的药物类似。目前,全球在研产品靶点分布较为分散,仅有Her2、EGFR、CD-19、TROP-2等靶点竞争激烈。

全球ADC药物靶点进展现状

全球ADC药物——光免疫疗法能否突围?

3.光免疫ADC

在效应分子方面,目前已上市和在研的ADC药物大多选择阿里他汀(MMAE、MMAF)、美登素(DM1、DM4)、加利车霉素等细胞毒素。一些制药公司也开始开展“非常规”效应器的开发工作。 2020年9月,乐天医疗研发的光免疫治疗ADC药物西妥昔单抗沙罗洛坎获批上市,为后续光免疫治疗ADC药物研发铺平了道路。

近红外光免疫疗法(NIR-PIT)是一种针对癌症的分子靶向光疗法。该疗法由针对癌细胞表面表达的抗原的单克隆抗体 (mAb) 和细胞杀伤性近红外光吸收染料 (IR700) 组成。

传统的免疫疗法,如免疫激活细胞因子疗法、检查点抑制、工程化T细胞等,并不直接破坏癌细胞,而是依赖于激活免疫系统。 NIR-PIT 可以选择性地破坏癌细胞,同时激活人体的免疫反应。

NIR-PIT 诱导的免疫原性细胞死亡

全球ADC药物——光免疫疗法能否突围?

抗体药物与肿瘤表面抗原结合后,在近红外光刺激下,IR700发生光诱导配体释放反应,释放出亲水性侧链,导致其余部分的疏水性显着增加。然后它会破坏细胞膜并引发针对癌细胞的快速且高度选择性的免疫原性细胞死亡(ICD)。

除了直接杀死癌细胞外,NIR-PIT诱导的ICD还可以导致垂死癌细胞的未成熟树突状细胞快速成熟,启动宿主抗癌免疫反应,并促进针对释放的抗原的CD8阳性T细胞的重新形成通过杀死癌细胞,进一步增强 NIR-PIT 的治疗效果。

IR700化学反应原理及偶联蛋白变化示意图

全球ADC药物——光免疫疗法能否突围?

西妥昔单抗沙罗洛康是光免疫ADC的产品,由水溶性硅酞菁衍生物IRDye700DX与西妥昔单抗连接而成。给药24小时后,药物特异性聚集在EGFR阳性肿瘤细胞表面。然后用690nm波长的近红外光照射肿瘤部位,诱导西妥昔单抗杀伤癌细胞,并激活免疫反应。

目前,该药物治疗复发头颈癌的I/IIa期临床试验(NCT02422979)已完成,Ⅲ期临床试验(LUZERA-301)已于2018年12月启动。

西妥昔单抗 sarotalocan 作用原理

全球ADC药物——光免疫疗法能否突围?

除西妥昔单抗sarotalocan外,全球共有5个免疫ADC项目在研,均处于临床前或药物发现阶段,且均使用IR700作为效应分子。

目前,ADC药物广阔的市场前景,在全球范围内掀起了相关产品的研发热潮。虽然上市产品数量较少,但处于研究阶段的产品已经出现了一些靶点拥挤和效应分子重复的现象。作为ADC领域的“少数研究”,光免疫ADC的临床和市场前景仍需经受时间的考验。然而,基于相关原理的新靶点和新的光激活效应分子的开发可能成为ADC赛道的新突破点。

蛋白质药物中的聚乙二醇修饰试剂的使用

蛋白质药物中的聚乙二醇修饰试剂的使用

改性PEG也称为改性聚乙二醇,是通过化学修饰基团或生物活性基团进行修饰的PEG。在药物开发和研究中,为了增加蛋白质或肽药物在体内的半衰期,降低免疫原性,同时增加药物的水溶性,将活化的聚乙二醇与蛋白质、肽、小分子化学偶联。分子有机药物和脂质体。药物经过PEG修饰后,往往具有以下优点:

1)半衰期较长
2)最高血药浓度较低
3)血药浓度波动小
4)酶降解较少
5)免疫原性和抗原性较小
6)毒性较小
7)溶解度较好
8)减少用药频率
9)提高患者依从性,改善提高生活质量,降低治疗费用
10)脂质体对肿瘤有更强的被动靶向作用

修饰PEG的用途介绍:

1.蛋白质药物的PEG修饰

PEG修饰的蛋白质药物可以延长药物的半衰期,降低免疫原性,并最大限度地保留其生物活性。作为治疗药物,用聚乙二醇(PEG)修饰的蛋白质比未修饰的蛋白质更有效。 PEG修饰蛋白质药物主要包括氨基修饰(包括N端氨基酰化修饰、赖氨酸侧链氨基酰化修饰、N端氨基烷基化修饰)、羧基修饰、巯基修饰。
PEG还可修饰蚓激酶、SOD、胰凝乳蛋白酶、G-CSF、pal酶、蛋白A、蛋白B、蛋白半胱氨酸等。

2.肽类化合物的PEG修饰

PEG修饰的肽类化合物,如边界降钙素、表皮生长因子的PEG修饰产物,比原型药物具有明显更高的半衰期和生物活性。尤其是在聚乙二醇的位点特异性修饰方面,肽类化合物比蛋白质更容易实现。在肽化合物的PEG修饰研究中最常见的应用是mPEG。

3.PEG修饰脂质体

脂质体是目前将各种药物转运至细胞内有效的载体之一。常见的免疫脂质体在血液中的循环半衰期短,且易于消除,限制了其发展。 PEG修饰的长循环脂质体不仅可以逃避网状内皮系统的捕获, 而且可以通过增加脂质体的血液循环时间来提高脂质体的被动靶向性。已广泛应用于脂质体药物制剂中。 PEG修饰的阿霉素脂质体比原药心脏毒性小,增加了患者耐受性,在体内起到控释和靶向药物的作用。

4. PEG修饰的有机小分子药物

小分子药物很多,其中大部分是抗肿瘤药物。利用PEG修饰技术,聚乙二醇支持小分子,可以将其许多优异的性质转移到缀合物上。其中,该聚合物具有优异的生物相容性,可溶解于体内组织液中,并能快速排出体外,无任何毒副作用。许多抗肿瘤药物都是通过高分子量PEG进行修饰,以实现被动靶向药物递送至肿瘤组织。PEG修饰方法主要是将PEG与这些小分子药物上的-OH、-NH2、-COOH偶联。如果待修饰的小分子药物不具有这些官能团,可以通过化学方法引入。

5.其他应用

PEG 修饰的亲和配体和辅因子用于水性两相分配系统,用于生物大分子和细胞的纯化和分析。 PEG修饰的碳水化合物可作为新的药物材料和药物载体。寡核苷酸聚乙二醇化可以增加溶解度、增加对核酸酶的抵抗力和细胞膜渗透性。生物材料的聚乙二醇化可以减少血栓形成并减少蛋白质和细胞粘附。

药物输送系统:外泌体 & 脂质体

药物输送系统:外泌体 & 脂质体

外泌体是广泛分布在组织中的天然纳米颗粒,可以由所有已知的细胞产生。外泌体是包裹在脂质双层膜中的纳米级细胞外囊泡,由大多数真核细胞分泌,具有的特性——固有的稳定性、低免疫原性、生物相容性和良好的生物膜穿透能力——使其能够作为高效的天然纳米载体。越来越多的研究表明,外泌体可以调节多种生物学功能,是临床诊断中生物标志物的重要来源。

1. 外泌体的介绍

外泌体是细胞内多泡体(MVB)与细胞膜融合后释放到细胞外基质中的膜性囊泡,可以运输丰富的蛋白质、脂质、DNA、RNA等物质。在自然界中,外泌体保护和传递功能性大分子,包括核酸、蛋白质、脂质和碳水化合物。外泌体通过将大分子转移到受体细胞或激活信号通路来改变受体细胞的行为。如转录与翻译、组织修复、免疫平衡、细胞分化与再生、细胞凋亡、细胞迁移、代谢调控、微生物环境等,这些远远不能涵盖近年来学术界广泛的研究工作。 

外泌体堪称“正邪兼备”的“多面手”,疾病的发生发展离不开它,免疫功能也离不开它,疾病诊断有时需要它,也可以用来制造疫苗。更多“坏”和“好”外泌体仍在被发现,更多外泌体的作用也在不断探索。最近的研究表明外泌体作为无细胞疗法的潜在用途,这可能为解决临床难题提供新策略。

越来越多的研究表明,外泌体在细胞间的长距离通讯中发挥着至关重要的作用,因为它们可以通过循环系统到达其他细胞和组织,产生远程调节。因此,人们对外泌体的功能及其作为小分子治疗载体的潜在应用产生了极大的兴趣。本文讨论了外泌体作为“天然纳米颗粒”用于递送药物和基因的潜力,并比较了其与脂质体的优缺点。

药物输送系统:外泌体 &amp; 脂质体

图1 通过外泌体进行细胞间通讯


2. 外泌体作为载体的优势和潜力

为了实现药物或基因递送,重要的是要考虑所使用的载体类型。外泌体载体结合了细胞药物递送和纳米技术的优点,可实现高效药物递送。与细胞疗法相比,外泌体更容易储存,可以降低安全风险。外泌体可以从患者体液或细胞培养物中分离出来,进行修饰并转移回同一患者体内。

人们对外泌体作为药物载体的期待源于外泌体的结构。其结构简单,外部是由磷脂双层组成的膜,膜内分布有丰富的蛋白质,内部是空腔,可负载大分子、小分子和核酸。空腔是我们可以用来 输送药物的空间。外部蛋白质的存在是非常有价值的。一方面,它可以提供低免疫原性和可重复给药的巨大潜力。另一方面,这些蛋白质可用于表面修饰、负载大分子和改善靶向性。

药物输送系统:外泌体 &amp; 脂质体

图2 外泌体结构


外泌体的医学潜力主要包括三大方向(图3):

A.外泌体在诊断预防中的潜力:从病例微环境中提取的外泌体可用作诊断特定疾病和损伤的生物标志物。

B. 外泌体的医疗潜力:外泌体由多种细胞产生,并以多种方式与靶细胞相互作用,产生医疗作用。

C.外泌体的药物递送潜力:外泌体可用于递送多种药物,如RNA、蛋白质和小分子。
 

 药物输送系统:外泌体 &amp; 脂质体

图3 外泌体的潜在应用

3. 外泌体的摄取和潜在靶向

外泌体起源于晚期内吞作用,可以扩散到细胞间液中。外泌体可以通过与靶细胞快速融合或受体介导的内吞作用来运输物质。到达特定受体细胞后,外泌体表面分子与膜受体结合,包括细胞间粘附分子、淋巴细胞功能相关抗原 1 和 TIM1 (TIM4)。最后,外泌体的内容物被释放到细胞质中,引起受体细胞的细胞内区室的变化。分泌的外泌体可能通过三种潜在机制被靶细胞吸收(图 4)。

A. 通过细胞膜的简单融合。

B.内吞作用。

C. 通过特定表面配体激活靶细胞。外泌体中的一些蛋白质成分可能有助于保护层和稳定囊泡结构的形成,并可能携带靶向信息。

药物输送系统:外泌体 &amp; 脂质体

图4 靶细胞摄取外泌体的机制
来源:参考文献[2])

4. 脂质体和外泌体给药的比较

将治疗剂输送到作用部位的主要挑战是脱靶毒性、快速清除以及靶组织、细胞或细胞器中的低积累和生物利用度。为了克服这些挑战,过去几十年来开发了多种合成递送载体(脂质体脂质纳米颗粒、聚合物胶束、无机纳米颗粒、树枝状聚合物等),其中一些已获得临床批准。在所有可用的纳米颗粒图谱中,迄今为止市场上最成功且经临床批准的载体是脂质体。由于脂质体和外泌体之间的相似性,接下来将比较两者的理化性质和药物递送能力。  

A.脂质体:将脂质药物负载到双层膜中;可以掺入配体以增加组织靶向特异性;亲水性药物可以负载在脂质体的腔内。 Onpattro 是美国食品和药物管理局 (FDA) 批准的第一个装载 siRNA 的脂质纳米颗粒,由可电离脂质、胆固醇、聚乙二醇化脂质和辅助脂质组成。

B.外泌体:可以将蛋白质、亲水性药物和核酸(miRNA、siRNA、mRNA等)装载到囊泡的腔内,同时可以将靶向配体、膜蛋白和亲脂性药物掺入膜中。

药物输送系统:外泌体 &amp; 脂质体

图5 脂质体和外泌体

物理特性、生产和质量控制

脂质体在结构上与外泌体相似,因为它们由脂质双层组成。类似地,外泌体可以在脂膜双层内携带疏水性药物,在水性核心内携带亲水性药物。此外,临床批准的脂质体大小约为 100 nm,与外泌体类似。此外,脂质体的大小允许静脉内给药并在细胞摄取后外渗到身体的某些部位。

尽管脂质体和细胞外囊泡 (EV)有相似之处,但它们作为药物递送载体之间存在许多差异。与外泌体相比,临床使用的脂质体由有限数量的脂质组成,但不含蛋白质和遗传物质等细胞成分,因此在药物质量控制和大规模生产过程中相对容易处理。

然而,外泌体富含鞘磷脂、胆固醇和溶血磷脂,因此外泌体可以实现比在脂质体中混合单个成分更高程度的复杂性。此外,由于膜和核心中存在生物分子,外泌体中可能存在额外的结合袋用于载药。这对制造和质量控制提出了更高的要求,而迄今为止,外泌体的规模化在生产和收获方面都具挑战性。

外泌体和脂质体的体内给药

纳米颗粒(外泌体和脂质体)被单核吞噬细胞系统(MPS)快速清除。脂质体代表可生物降解和生物相容性 DDS,具有非常通用的高通量制备和药物封装效率,允许冻干和表面修饰。为了降低免疫原性并避免脂质体快速被血液清除,广泛使用聚乙二醇(PEG)表面涂层,从而允许在靶组织中积累更多物质。用 PEG 或 PEG 缀合的靶向配体修饰外泌体已被提议作为增强外泌体药物递送能力的有前途的策略。另一个有趣的策略是选择含有特定表面蛋白(例如 CD47)的外泌体子集。这种蛋白质在外泌体中充当“不要吃我”的信号,可能使它们能够绕过 MPS 并表现出更长的循环时间。

生物分布

市场上所有获批的脂质体药物均依赖于被动靶向,只有一小部分主动靶向药物已进入临床阶段。这是因为,即使当表面配体用于靶向靶细胞上的特定受体时,脂质体的积累仍然被认为是由称为增强渗透性和保留(EPR)效应的被动外渗过程决定的。通过EPR效应,循环时间较长的脂质体容易在肿瘤或受损心肌中积聚。

药代动力学和药效学(PK/PD)

PK/PD作为基于药物生理药理作用的模拟系统,可以为药物的治疗效果提供有价值的信息。与游离形式相比,药物封装在脂质体中可防止快速清除并显着改变药物的 PK 特性。由于表面 CD47 的存在,与脂质体相比,外泌体可能具有降低 MPS 介导的清除率的潜力,但还需要更多证据。由于大规模外泌体生产的挑战和内源性外泌体的存在,关于外泌体的 PK/PD 特性的信息很少。全面了解外泌体作为 DDS 的 PK/PD 特性对于外泌体进入临床至关重要。

外泌体作为载体的挑战

探索外泌体临床应用的一个关键问题是,对于获得高产量纯外泌体的最佳方法缺乏共识。这主要是由于哺乳动物细胞释放的外泌体数量相对较少。此外,外泌体的纯化很麻烦。有多种方法可从细胞培养上清液或生物液体(如牛奶、尿液、血浆、羊水、唾液和脑脊液)中分离外泌体(见表 1)。这些方法各有优点和缺点。

药物输送系统:外泌体 &amp; 脂质体

表 1:优缺点总结
(来源:参考文献[2])

要获得高产率的纯外泌体,首要途径是扩大外泌体的来源。除此之外,人们还努力将细胞和纳米载体的特性结合起来。此外,能够在不破坏外泌体的情况下增强各种货物的装载能力和靶向能力也非常重要。因此,许多研究人员致力于开发合适的方法来修饰外泌体以负载药物或基因。

结论

近年来,外泌体在生物医学领域受到广泛关注,其易于负载多个分子、具有靶向性、工程化潜力、免疫原性低、适合重复给药等。外泌体作为新的研究热点,已成为疾病诊断和治疗的潜在有效方法,前景广阔。当然,外泌体有其自身的一些局限性。现阶段外泌体的研究并不丰富,因此生产率较低,这也是该领域需要改进的方向。尽管如此,使用外泌体作为药物或基因递送载体仍处于起步阶段。我们相信,随着外泌体研究的深入,外泌体疗法最终可能会导致药物或基因递送领域的重大突破。

Polyethylene glycol(PEG)因其“隐形”特性和生物相容性而被广泛应用于药物输送和纳米技术。BiopharmaPEG一直专注于纳米载体系统(包括各类纳米颗粒、脂质体、胶束等)全系列医疗应用和技术的开发,在该领域积累了大量的数据模型和丰富的研究经验。基因疫苗和蛋白药物纳米载体的构建和优化。

药物偶联物简介

药物偶联物简介

药物偶联物,特别是抗体药物偶联物(ADC),因其临床效果和潜在商业价值而受到广泛关注。而技术的进步导致了药物偶联物新旧理念的交织碰撞,甚至对现有的理念和技术提出了挑战。

如今,出现了多种新的缀合技术概念,包括肽药物缀合物(PDC)、小分子药物缀合物(SMDC)、免疫刺激抗体缀合物(ISAC)、抗体-寡核苷酸缀合物(AOC)、放射性核素药物缀合物( RDC)、抗体片段-药物偶联物(FDC)、适体药物偶联物(ApDC)、抗体细胞药物偶联物(ACC)、病毒样药物偶联物(VDC)等。此外,新的技术形式如抗体降解剂偶联物( ADeC)仍在不断涌现。本文简要介绍了几类药物偶联物的技术特点和代表性项目开发进展。

抗体药物偶联物 (ADC)

抗体药物偶联物(ADC)是目前最成功的药物偶联物类型,上市药物数量最多,具有良好的临床效益和商业价值。根据2021年《Nature Reviews Drug Discovery》发表的文章,到2026年全球ADC药物市场将达到164亿美元

ADC 旨在通过基于抗体靶向将细胞毒性药物引入癌细胞周围来减少全身暴露并提高安全性。该药物由三个主要成分组成:抗体(靶向)-连接器(将抗体与有效负载连接)-有效负载(杀死肿瘤细胞)。

药物偶联物简介
图1|抗体-药物缀合物构建体。图片来源:参考文献1

ADC药物的开发最早,但随着基于更先进技术开发的药物临床验证数据的增加,其面临的挑战也最大。首先,人们普遍认为抗体靶标应该被很好地内吞,但免疫刺激抗体偶联物 (ISAC) 表明也许不需要靶蛋白内吞。其次,传统观点认为抗原必须过度表达,而正常细胞不表达或低表达,而今年 ASCO 会议上 disitamab vedotin 的亚组分析显示,它对几乎所有 HER2 阳性和 HER2 低表达乳腺癌都有益处,以及Enhertu 也适用于 HER2 阳性和 HER2 低表达的肿瘤物种。第三,弹头的品种已经丰富,并不一定需要细胞毒性,免疫刺激剂和调节剂(STING、TLR、Treg)、蛋白水解靶向嵌合体(Protac)、寡核苷酸等药物也在临床或临床前研究中显示出初步有效性。

截至2022年12月,全球已有15种ADC药物获批上市,以及超过400种已公布的在研ADC候选药物,主要集中在肿瘤、罕见病和血液学治疗领域。有 136 种候选药物专注于共同靶标,其中 53 种针对HER2

药物偶联物简介药物偶联物简介

放射性核素抗体偶联物 (RAC)

放射性核素药物偶联物 (RDC) 与 ADC 类似,它们使用抗体或小分子(包括肽)介导的靶向来精确靶向细胞毒性/成像因子(放射性核素放射性同位素),以避免全身暴露的潜在危险。不同之处在于RDC负载是放射性核素,可用于诊断和治疗功能。其成分也与ADC略有不同,需要添加螯合毒素的特定官能团结构(螯合剂)。一般来说,它仍然由配体-连接体-有效负载组成。

药物偶联物简介
图 2. 放射性核素药物结合物 图片来源:imagingprobes

诺华2017 年以 39 亿美元收购了 Advanced Accelerator applications,其 RDC 药物 Lutathera(镥(177Lu)氧曲肽)自上市以来已成功商业化。 2018 年 10 月,以 21 亿美元收购 Endatory 后,又收购了其 PSMA 靶向放射性配体疗法 177Lu-PSMA-617。

药物偶联物简介
表 1. 近五年 FDA 批准的 RDC

在今年的 ASCO 会议上公布 VISION 研究结果后,177Lu-PSMA-617 被FDA授予突破性疗法称号。在转移性去势抵抗性前列腺癌的治疗中,177Lu-PSMA-617 显着改善了中位影像学无进展生存期(8.7 vs. 3.4 m)并延长了 OS,并将影像学进展或死亡风险降低了 60%。

药物偶联物简介
药物偶联物简介
图 3 和图 4。Lutetium-177-PSMA-617,图像来源:ASCO 2021:

小分子药物偶联物 (SMDC)

小分子药物偶联物(SMDC)通常也由靶分子、接头和效应分子(细胞毒性分子、E3连接酶等)组成。

药物偶联物简介
图 5. 小分子-药物缀合物,图片来源:Network of Cancer Research

事实上,目前药物偶联物的过度细分也导致了不同概念药物之间的交叉。例如,肽药物偶联物(PDC),通常仍然属于小分子药物偶联物。 Lutathera,177Lu-PSMA-617,虽然根据毒素被归类为RDC,但其靶向配体均属于小分子领域。最近,PEPAXTO获批上市,Oncopeptides将其定位为肽-药物缀合物,但其分子结构并不是药物缀合物组合物的通常形式,或者应该属于前药缀合物(Pro-DC)或前药,在癌细胞周围分解,达到烷化剂样的肿瘤杀伤作用。

药物偶联物简介
图 6. PEPAXTO 的结构

因此,我们结合了小分子药物偶联物和肽药物偶联物的分析。小分子领域,Endatory产品Vintafolide有条件上市,但临床三期研究失败后撤市。

药物偶联物简介
表 2. 正在调查的 SMDC 和 PDC

免疫刺激抗体偶联物 (ISAC)

免疫刺激抗体偶联物(ISAC)的技术要求与ADC非常相似,不同之处在于ISAC负载的是先天免疫激动剂或调节剂,能够将冷肿瘤转化为免疫热肿瘤。此外,其功能与肿瘤微环境激活药物偶联物(TMAC)部分相似,均通过调节免疫刺激和微环境来实现免疫杀伤激活和治疗增敏。

药物偶联物简介
图 7. 免疫刺激抗体偶联物,图片来源:AACR2021

目前参与此类机制的药物主要有Toll样受体激动剂(TLR)型ISAC药物SBT6050、SBT6290、BDC-1001。 STING激动剂ISAC药物XMT-2056、Treg细胞调节ISAC药物ADCT-301等。不过,其中很多药物也被企业自己定义为ADC药物,或许也是因为两者在术语上并没有太多区别药物的外观性能和技术。

药物偶联物简介
图 8. BDC-1001,图片来源:BOLT BIOTHERAPEUTICS

抗体降解剂偶联物 (AdeC)

2021 年 6 月 16 日,瑞士公司 Debiopharm 和韩国公司 Ubix Therapeutics 联合宣布开展研究合作,结合 Multilink 和 Degraducer 两个专有技术平台开发 Antibody Degraducer Conjugates (ADeC)。

药物偶联物简介
图 9. 抗体-降解剂-缀合物

这种合作才刚刚开始,或许相关药物还没有被研究出来。然而,根据他们的平台技术,预计将开发的ADeC药物将是一种抗体药物缀合物,用降解分子取代有效负载,或许还携带其他有效负载以产生协同效应。 ETC。

ADeC的目的还在于将降解的分子携带至靶位点,避免全身暴露,甚至克服Protac分子的一些潜在成药性问题,如理化缺陷、特异性、PK等。

在 AdeC 领域,Orum Therapeutics 已开始临床前研究,并于最近完成了 8400 万美元的 B 轮融资,以继续推进其产品线。

药物偶联物简介
图 10. Orum 疗法

Orum Therapeutics 的技术还结合了与抗体偶联的蛋白质降解剂,其概念与 Debiopharm 和 Ubix 的技术相似,特别是降解剂,两者都具有泛素酶降解作用机制。

然而,两者也有所不同,Orum Therapeutics 将类别定义为抗体 neoDegrader 缀合物 (AnDC)。

药物偶联物简介
图 11. 抗体-neoDegrader-缀合物,来源:Orum Therapeutics

抗体片段-药物偶联物 (FDC)

抗体片段-药物偶联物(FDC),顾名思义,就是用较小的抗体片段(单链scFv)来替代较大的抗体分子。人们普遍认为抗体片段相对容易找到,并且可以通过生物工程实现更高的 DAR。

药物偶联物简介
图12.抗体片段-药物偶联物(FDC),来源:antikor网站

FDC在技术上与ADC几乎相同,但使用更小的片段抗体有望提高肿瘤渗透性并最大限度地提高药物疗效。小碎片和缺乏 Fc 可以在正常组织和循环中快速清除,从而降低毒性。

适体药物偶联物 (ApDC)

适体药物偶联物 (ApDC) 是药物偶联物的一种形式,它使用结构化寡核苷酸序列作为相应分子的靶标。核酸适体被称为“化学抗体”,具有与抗体类似的靶向和靶点结合特性。与抗体相比,核酸适配体还具有稳定性高、免疫原性低、生产成本低、易于化学修饰等诸多优点。

药物偶联物简介
图 13. 适体药物缀合物 (ApDC),来源:分子疗法:核酸

由于ApDC药物使用寡核苷酸序列,因此它们在接头和缀合策略方面可能与ADC药物不同,但在药物成分、作用机制和有效负载方面与ADC药物没有太大区别。

病毒样药物偶联物 (VDC)

病毒样药物结合物(VDC)是药物结合物的一种形式,它使用设计为非感染性蛋白质纳米颗粒(病毒样颗粒(VLP))的病毒衣壳作为有效的递送载体。

药物偶联物简介
图 14. 病毒样药物偶联物 (VDC),来源:Aura 网站

Aura采用人乳头瘤病毒(HPV)衍生的VLP选择性附着在修饰的硫酸乙酰肝素蛋白聚糖(HSPG)表面,以实现与实体瘤细胞或转移瘤的结合,但不与正常组织结合。AU-001是该机制的VDC产物。病毒样成分选择性地与HSPG结合,结合的红外光激活细胞被激活,选择性地破坏肿瘤细胞,导致肿瘤细胞急性坏死,同时激活免疫系统产生抗肿瘤反应。

药物偶联物简介
图 14.  AU-011,来源:  Aura 网站

抗体-寡核苷酸缀合物 (AOC)

抗体-寡核苷酸缀合物 (AOC) 是治疗性寡核苷酸利用抗体将siRNA(siRNA、PMO等)递送至特定细胞或组织,从而减少治疗患者疾病所需的药物量,并解决不可靶向和寡核苷酸递送的问题。寡核苷酸与靶向配体的缀合还可以改善寡核苷酸(治疗性RNA或DNA分子)的药代动力学特性并扩大其应用。与ApDC不同的是,AOC旨在实现寡核苷酸的靶向递送,阿斯利康已经对相关产品进行了研究。从技术上来说,AOC使用抗体作为传递介质,也可以假设小分子(包括肽)、蛋白质(酶)等也可以发挥相关功能。细分时,仅以寡核苷酸作为有效负载的药物也产生了各种概念产品。

药物偶联物简介
图 15. 抗体-寡核苷酸缀合物 (AOC),来源:avidity biosciences 网站

Avidity还基于此理念开发了AOC产品AOC1001,用于治疗强直性肌营养不良1型(DM1)疾病,并计划于2021年下半年进行相关临床研究。

结论

总而言之,现阶段的药物缀合物仍然保留相同的组成,即“配体-连接子-效应物”形式。由于技术的进步和药物剂型的繁荣,配体、连接臂和效应分子的定位有了更多的选择,导致了该领域的细分,并出现了多种药物缀合物的表达方式,如ADC、RDC、SMDC、 ISAC、ADeC、PDC、FDC、VDC、AOC 等。但过度的细分也造成了产品概念的混乱,即使是同一产品,不同企业的定义也存在差异。

本质上,大多数药物缀合物都是通过定位配体来达到靶向目的,以及不同功能的效应分子来达到治疗价值或临床目的;产品设计理念延续了ADC药物思路,不同的是三类成分(配体-连接体-效应分子)的转化。不过,ADC、RDC、SMDC和ISAC仍然是最成功的药物偶联物类型,并且已经有相关药物上市或多个临床药物处于概念验证阶段,而其他药物偶联物仍更多处于概念或阶段目前尚处于临床前阶段,能否实现临床价值还有待观察。


抗体药物偶联物 (ADC) 概述

抗体药物偶联物 (ADC) 概述

抗体-药物偶联物 (ADC)由所需的单克隆抗体、活性药物和适当的接头组成。抗体和药物之间适当的连接体维持ADC的稳定性并提供特定的桥梁,从而帮助抗体选择性地将药物递送至肿瘤细胞并在肿瘤部位准确地释放药物。
ADC PEG 连接体 的选择是靶标依赖性的,基于对所使用的活性药物(包括细胞毒素)、抗体-靶标抗原复合物的内化和降解以及缀合物的临床前体外和体内活性比较的了解。
单分散聚乙二醇 PEG是靶向治疗中应用广泛的一种连接子。PEG连接体具有高利用率、靶向性、调节PH值等特点。PEG连接体具有多种官能团选择,可以与不同的抗体和药物缀合,形成不同的连接体,如pH敏感连接体、二硫键连接体、 β-葡萄糖醛酸连接基…
单分散
胺-PEG-羧基作为小分子连接基,含有亲水基团,可以溶解在大多数溶剂中,因此胺基也广泛用于ADC设计中。此外,与匹配的抗体或药物连接的胺基可以作为pH敏感的连接体。

肽-药物偶联物(PDC):发展现状及研究进展

肽-药物偶联物(PDC):发展现状及研究进展

靶向抗癌药物一直是近年来药物研发的热点。随着抗体-药物偶联物(ADC)的成功,新型偶联药物不断涌现,如肽-药物偶联物(PDC)、放射性核素药物偶联物(RDC)、抗体-寡核苷酸偶联物(AOC)等。

目前,大多数新的缀合药物仍处于早期阶段,而PDC有相对较多的产品处于临床开发阶段,有望成为继ADC之后的另一个热点领域。

肽-药物偶联物(PDC)是继抗体-药物偶联物(ADC)之后的下一代靶向治疗药物,其核心优势是增强细胞通透性和提高药物选择性。截至目前,全球已有两款PDC药物获批上市,分别是诺华公司2018年开发的Lutathera和Oncopeptipes公司2021年开发的Pepaxto

肽-药物偶联物(PDC):发展现状及研究进展

ADC药物相比,PDC药物具有分子量小、肿瘤穿透性强、免疫原性低、生产成本低等优点。 PDC药物有望成为继小分子药物、单克隆抗体、ADC药物之后的新一代靶向抗癌药物。过去几年,多家制药公司一直致力于开发 PDC 药物,作为癌症、代谢性疾病等疾病的靶向治疗候选药物。本文介绍了PDC药物的发展现状及未来发展方向,希望为PDC药物研发带来参考价值

ADC 和 PDC 的比较

肽在人类生命中发挥着多种功能,如修复细胞、改善细胞代谢、防止细胞变性等。肽具有生物活性和良好的靶向转运能力。这一特性使其不仅适用于肿瘤学,还适用于糖尿病、风湿病和类风湿关节炎的靶向治疗。

PDC的结构与ADC类似,不同之处在于靶向单元。 ADC的靶向单元是抗体,而PDC是肽(图1)。PDC主要由多肽、链接链和细胞毒素组成。 PDC的作用机制也与ADC类似。靶向多肽与细胞毒素通过细胞内可分解的连接链共价连接,精准靶向肿瘤细胞的特异性受体,可控释放细胞毒素,从而杀伤肿瘤细胞。 PDC的分子量较小,因此表现出更好的膜渗透性。同时,PDC更容易被肾脏清除和代谢,这对于减少对肝脏和骨组织的毒性至关重要。此外,PDC的生产成本较低,载药量种类较多。因此,PDC是一种具有巨大研发前景和市场前景的靶向治疗药物。

肽-药物偶联物(PDC):发展现状及研究进展

图 2. PDC 和 ADC 的比较

研究表明,PDC药物比 ADC药物有更广泛的应用。除了癌症治疗之外,  PDCs还可以应用于许多其他疾病,作为抗癌药物递送的一种手段,PDC 具有共价修饰配体肽的优势,可以靶向肿瘤部位的特定细胞表面受体或生物标志物,以获得持久的疗效,从而赋予总体理想的药代动力学特征。这使得足够数量的药物能够被输送到癌症部位,同时最大限度地减少对健康组织的暴露并降低毒性。

癌症是一个重大的公共卫生问题。根据患者的分期和肿瘤类型,患者接受以下一种或多种治疗:手术、放射治疗或化疗。  2019年底以来,随着病毒大流行席卷全球,许多新的药物治疗策略应运而生。但药物治疗存在不同程度的毒副作用,有些严重的毒副作用是限制药物剂量或使用的直接原因。

通常,化疗会迅速抑制细胞有丝分裂,并产生严重的副作用。即使肿瘤被成功除,健康组织也可能会受到化疗的影响。幸运的是,靶向药物治疗可以有效区分肿瘤细胞的特征(包括细胞pH、细胞GSH含量、细胞形态和酶表达差异),从而改善患者不良预后并减少毒性。作为一种新兴的靶向抗癌疗法,PDC 可驱动肿瘤干细胞中有毒有效负载的积累,从而实现精确的药物治疗。然而,PDC药物面临的最大挑战是其体内转运不稳定,导致生物利用度低。

PDC的重要组成部分

PDC是一种结构和功能与ADC相似的靶向治疗药物,由不同类型的肽与药物连接而成。PDC由三个重要成分组成:归巢肽、连接链和细胞毒su药物。这三种成分协同作用,通过靶向肿瘤细胞上的受体来递送化疗药物,以放大其治疗效果。

肽-药物偶联物(PDC):发展现状及研究进展

图3 PDC结构示意图

1. 归巢肽

PDC中的肽主要是细胞穿透肽(CPP)和细胞靶向肽(CTP)。目前,细胞穿膜肽在细胞膜上的摄取机制尚不清楚,细胞特异性较低,限制了细胞穿膜肽的应用。相反,细胞靶向肽是理想的载体,可以特异性结合肿瘤细胞表面受体(图3)并转运药物。常见的细胞靶向肽包括:铃蟾肽类似物、GnRH类似物、生长激素抑制类似物、RGD肽、PEGA等。

肽-药物偶联物(PDC):发展现状及研究进展

图 4. 常见的肽靶向受体

(1).靶向肽的选择

研究表明,不同的肽会影响PDC内吞药物的效率,并对疗效、药代/药效特征、治疗指标产生显着影响。一般来说,理想的PDCs肽应具有较强的靶点结合亲和力、高稳定性、低免疫原性、高效内化和长血浆半衰期。归巢肽可以靶向肿瘤组织中特定的过表达蛋白受体,直接将药物递送至靶细胞并限制化疗药物的脱靶递送。这些归巢肽通常在纳摩尔浓度下对靶标具有高结合亲和力。

此外,归巢肽的二级结构显着影响其结合亲和力。研究发现,连接链可以通过稳定二级结构来提高归巢肽与靶标的结合亲和力。除了靶向特性外,一些肽还可以充当细胞穿透肽(CPP),其表现出疏水性、两亲性和促进跨膜渗透的负电荷等特性。细胞穿透肽可以将药物递送至靶组织并介导细胞内的药物内化。然而,带正电荷的 CPP 有一些缺点,例如目标选择性不稳定,导致非特异性细胞摄取。因此,带负电荷的 cpp 常用于 PDC 中以提高肿瘤细胞特异性。

肽和小分子具有显着不同的药代动力学特性。其中,多肽药物的最大缺点是生物利用度和药物摄取较低,而且多肽通常不能口服。因此,快速的肾脏清除和短的半衰期阻碍了肽的体内研究以及影响其药物形成特性的因素。有多种方法可以改善肽的 ADMTE 特性:

A。增加细胞通透性。
b.增强化学稳定性和抗蛋白水解能力。
C。降低肾清除率,延长循环半衰期。

(2)。提高肽稳定性和细胞通透性的策略

目前,常见的提高肽稳定性和细胞通透性的策略主要包括以下几种(图4):

A。肽的环状修饰。环化反应广泛应用于多肽的合成中,包括头尾环化、头尾环化、侧链环化、侧链与侧链环化等。肽吻合常用于确定肽的二级结构,如α螺旋和β折叠,可以提高肽与其靶标的结合亲和力,提高其ADME。
b.氨基酸修饰。增加肽稳定性的另一种方法是使用 D-构型氨基酸代替 L-构型氨基酸。这降低了蛋白水解酶的氨基酸序列、底物识别和结合亲和力。
C。与化学大分子结合的修饰。肽的电荷与肾清除率相关。带负电荷的肽比带正电荷的肽具有更长的半衰期。较高分子量(>450 kDa)的肽可以增加肽的亲脂性。此外,PEG链修饰、PSA修饰、HES修饰、脂肪链修饰等修饰方法也可以增加多肽的半衰期。
d.改变剂型。细胞内蛋白质递送系统通常依赖于遗传蛋白质与基于阳离子脂质体、聚合物和无机纳米材料的膜穿透标签和蛋白质封装载体的融合。已报道了几种通过剂型提高肽治疗药物口服生物利用度的方法,例如添加渗透促进剂和耐酸包衣等。

肽-药物偶联物(PDC):发展现状及研究进展

图5 肽的修饰策略

2. 连接链

连接链的选择是PDC设计的关键因素之一。需要考虑PDC的微环境,以免干扰肽与其受体的结合亲和力及药效。根据长度、稳定性、释放机制、官能团、亲水性/疏水性等特性,PDC 中使用不同类型的连接体。PDC 中使用的连接链必须表现出稳定性,以防止过早和非特异性药物释放。

连接链分为两大类:可裂解链和不可裂解链(图 5)。可裂解的连接链可以通过酶或化学方法裂解。其中,化学可裂解的连接链包括:PH敏感的连接链、二硫键连接链和外源刺激裂解的连接链。不可裂解的连接链不能被外部刺激激活,并且不可裂解的连接链在肽代谢释放有效负载后起作用。虽然可裂解接头在靶向治疗的开发中更有利,但不可裂解接头在体内代谢循环中更稳定。因此,可裂解或不可裂解接头的选择取决于靶向治疗剂的设计和作用模式的需要。

肽-药物偶联物(PDC):发展现状及研究进展

图 6. 环链的类型

3. 载药类型

有毒性药物是杀死肿瘤过程中重要的一部分。 PDC进入细胞后,毒素药物是最终导致靶细胞死亡的因素。因此,有毒性药物的毒性和理化性质可以直接影响药物杀伤肿瘤的能力,从而影响其疗效。一般来说,细胞毒素必须具备四个要求:作用机制明确、分子量小、细胞毒性高、与肽化学缀合后保留抗肿瘤活性。然而,每种有毒性药物通常都有其局限性,如PK性能较差等。此外,有毒性药物的非选择性是最大的缺点,会引起严重的副作用。由于化疗药物附着在肽上,因此需要较低的细胞毒性剂量。所以,所选的化疗药物通常具有较强的抗增殖活性。 PDC的化疗药物包括阿霉素、紫杉醇、喜树碱等。还包括放射性核素、177Lu装备。  

肽-药物偶联物(PDC):发展现状及研究进展

图 7. PDC 中的载药类型

PDC最新研究进展

迄今为止,全球已开发并上市两种PDC药物:Lutathera,由诺华于2018年批准,Pepaxto,由Oncopeptipes于2021年开发。Lutathera是诺华开发的第一个全球批准的PDC药物,属于新兴的肽受体放射性核素治疗(PRRT)。狭义上,该药物还可归类为放射性核素药物缀合物(RDC)。 Pepaxto是一种first-in-class肽缀合药物,严格来说,它是第一个获批的PDC药物。遗憾的是,同年10月22日,Oncopetides宣布撤回Pepaxto在美国市场,主要是因为在验证性III期OCEAN研究中,Pepaxto未能降低ITT人群的死亡风险。此外,还有多个PDC处于临床试验阶段,PDC赛道竞争激烈。

肽-药物偶联物(PDC):发展现状及研究进展

图8. 进入临床试验并获批上市的PDC药物

结论

PDC是多肽与化疗药物的组合,它结合了多肽的选择性和化疗药物的高抑制活性。 PDC通过修饰肽的氨基酸序列,可以改变缀合物的疏水性和电离性,解决水溶性和代谢差等问题,同时促进细胞通透性,有助于进一步的临床开发。此外,较低分子量的 PDC 更容易纯化。

PDC可以显着提高治疗效果,同时还可以降低毒性,提高治疗窗,在肿瘤治疗中具有更广阔的应用前景。尽管肽具有较小的分子量和更快的肾脏清除率,但这些问题已通过多种方法得到有效解决,包括化学修饰和物理技术(环化、结合肽、剂型)。

PDC是抗癌的一个新的研究领域,但仍存在许多问题有待解决。幸运的是,基于adc药物的成功研发,PDC研究或许可以有一些捷径,少走一些弯路。同时,随着研发技术的创新,PDC研究将逐步得到临床验证,从而推动该领域的发展,带来更多的治疗选择。

Biopharma PEG致力于成为您可靠的合作伙伴,提供各种PEG 连接体,以促进抗体药物偶联物 (ADC) 开发项目。我们致力于推动您的 ADC 发现和开发项目的进展。

proteogenix 抗体-药物偶联物简介

proteogenix 抗体-药物偶联物简介

抗体药物偶联物 (ADC) 是一类新兴药物,旨在向临床靶标输送剧毒货物(有效负载)。在 ADC 中,有效负载是药物活性成分。因此,它们决定了这些疗法的总体有效性。直到最近,ADC 有效负载的开发几乎集中在细胞毒性药物和癌症靶标上。但随着连接化学的安全性和有效性不断提高,可用于生成新 ADC 的有效负载的多样性也在不断增加。

什么是药物有效负载?

有效负载是 ADC 的三个主要组件之一。它们是高活性和有毒的药物分子,通过化学接头连接到抗体上。有效负载可以是小分子、蛋白质毒素、生物活性肽、酶,甚至放射性核素。

抗体药物偶联物 (ADC) 的效力取决于其在肿瘤细胞和组织中的细胞毒性有效负载的最终浓度。反过来,该浓度取决于 ADC 表面上有效负载的分布、缀合物稳定性和药物的总体细胞毒性。为 ADC 选择适当的有效负载取决于目标的性质、结构和分布以及其他属性。

如何为 ADC 选择有效负载?

早期的 ADC 使用先前已批准用于临床的药物有效负载。然而,这些药物由于毒性低,导致结果不佳,从而为 ADC 的研究带来了新的方向。研究人员很快发现,对于非靶向临床应用来说,ADC 的最佳有效负载是那些被证明毒性太大的有效负载。

目前,有效的有效载荷是能够在纳摩尔或皮摩尔范围内杀死癌细胞的有效载荷。此外,为了有效,有效负载还需要具有相当的可溶性、非免疫原性(小),并且具有可与接头缀合的反应位点。最后,药物必须与 ADC 的连接基化学相容:可裂解或不可裂解。

大多数有效负载可以与可裂解的接头缀合,因为作为对化学或物理信号的响应,这些分子桥在目标附近被去除。相反,不可切割的接头稳定地附着在其有效负载上。因此,在估计有效负载的毒性时必须考虑连接体的存在,因为这种类型的化学通常会影响细胞毒性药物的结构和活性。

ADC 开发中常用的细胞毒性有效负载有哪些?

为 ADC 开发的大多数细胞毒性有效负载属于两个主要家族:微管蛋白抑制剂(美登木素生物碱、auristatin 或紫杉醇衍生物)和DNA 修饰剂(主要是加利刹霉素)。所有这些药物都在纳米和皮摩尔范围内表现出强大的细胞毒性——毒性太大而无法全身给药。

微管蛋白抑制剂有效负载在细胞生长过程中通过有丝分裂停滞引起细胞死亡而发挥作用。由于其有利的生化特性,它们代表了主要的有效载荷类别。此类中最著名的化合物是单甲基 auristatin E (MMAE) 和 F (MMAF),这两种合成化合物均源自天然抗有丝分裂药物多拉司他汀 10。目前,几种已批准的 ADC 携带 MMAE,包括 brentuximab vedotin、polatuzumab vedotin 和 enfortumab vedotin。

相比之下,DNA 损伤剂的作用与细胞的生长过程无关。它们经常被描述为分子剪刀,因为它们能够切割基因组 DNA,从而导致细胞死亡。目前正在积极临床开发的其他类型的药物有效负载包括 RNA 修饰药物(鹅膏毒素)、蛋白质毒素、抗生素和酶。

有效载荷等级 作用机制 例子
奥利他汀类 微管蛋白聚合酶抑制剂 单甲基奥里斯他汀 E (MMAE) 和单甲基奥里斯他汀 F (MMAF)
美登素 微管蛋白解聚 美登木素生物碱(DM1 和 DM4)
加利车霉素 DNA切割 加利车霉素γ1
双金霉素 DNA小沟烷化剂 CC-1065 和多卡霉素 SA
吡咯并苯二氮卓类 (PBD) 二聚体 DNA小沟交联剂 PBD衍生物
鹅膏毒素 RNA聚合酶II抑制剂 α-鹅膏蕈碱
蛋白质毒素或免疫毒素 一些 假单胞菌外毒素 (PE) 和白喉毒素 (DT)
抗生素 一些 4-二甲氨基哌啶-羟基苯并恶嗪利福霉素 (dmDNA31)
一些 β-葡萄糖醛酸酶、脲酶等

一般来说,术语ADC是指抗体和小药物之间的结合。最后三类有效负载由大分子组成,由于药效学受阻和作用机制不同,这些大分子带来了不同的挑战。例如,与抗生素的结合被认为是 ADC 的新兴子类,通常被称为抗体-抗生素结合物(AAC)。这些结合物的出现是由于多重耐药细菌的日益流行和抗生素管道的减少。 AAC 由于其特异性而提供了传统抗生素疗法的替代方案,可以在不干扰健康微生物群的情况下针对特定的致病菌群。

同样,与酶的缀合通常称为抗体-酶缀合物。这些缀合物通常采用两步策略,包括与缀合物一起使用前药。该前药作为无毒前体,可以全身给药,并且只有在 ADC 酶促部分存在的情况下才能转化为其毒性形式。目前正在进行独立于前药的酶缀合物的开发。

由于大型生物活性分子带来了一系列的挑战,酶和抗生素缀合物都被认为独立于传统的 ADC 开发。

这些有效负载可以作为游离药物(即,当使用可裂解接头技术时)、作为接头-有效负载复合物(即,当使用不可裂解接头技术时)或封装在纳米载体内递送至其特定靶点。在 ADC 开发中使用纳米载体是一个相对较新的研究领域。这些载体包括基于脂质的颗粒,例如脂质体和聚合物分子。它们旨在为每个 ADC 封装大量药物,增强其药代动力学和分布,保护药物免于过早降解,增加疏水性药物的溶解度,并增强其跨细胞膜的扩散。

总之,纳米载体试图减轻单克隆抗体表面可用缀合位点数量有限所带来的问题,同时最大限度地提高每种抗体可以递送至其预期靶标的浓度。然而,目前抗体-纳米载体缀合物尚未进入市场。

ADC 有效负载的未来

ADC 开发中最大的挑战之一是平衡有效负载功效与 ADC 安全性。这两个特性不仅取决于有效负载的固有毒性,还取决于药物与抗体的比率 (DAR) 和连接体化学的稳定性。目前正在开发几种方法,试图增加抗体和小药物有效负载之间的协同作用。这些策略大多数集中在接头化学的改进以及 ADC 与其他疗法(例如免疫检查点抑制剂)的组合上。

然而,与其他研究领域相比,新型有效载荷的开发已经滞后。该市场主要由 auristatins 和美登木素生物碱衍生物主导,PBD 二聚体在 ADC 应用中慢慢占据一席之地。 ADC 开发有效负载选择受到限制的原因与合成方面的限制有关。用于快速合成有效负载的前体的可用性仍然是该过程中具限制的步骤。

目前,专家认为,有效负载方面的改进应侧重于开发具有成本效益的前体,以实现快速合成和增强药物溶解机制(例如,使用纳米载体)。

可生物降解药物递送肽纳米胶囊

可生物降解药物递送肽纳米胶囊

长期以来,纳米粒子的研究总是需要某种程度的权衡。纳米载体可能有效转染,但对细胞有毒。其他人可能不会引起免疫反应,但由于缺乏生物降解性,会随着时间的推移在环境中积聚。BAPC 不仅克服了现有纳米载体的所有问题,而且提供了一定程度的定制,使它们成为几乎任何应用的选择。

支链两亲肽胶囊 (BAPC) 是一种高效的运输系统,可以输送核酸、小蛋白和溶质。BAPC的分解能力对于它们作为人类和农业应用的运载工具的采用至关重要。然而,到目前为止,BAPCs被证明对哺乳动物的降解系统是惰性的。在这里,我们使用BAPCs封装有毒尿素类似物硫脲,证明常见的土壤真菌构巢曲霉可以降解BAPC。我们提供的证据表明,这种降解是通过分泌蛋白酶的作用进行的细胞外降解。我们的数据表明,BAPCs很可能在环境中可生物降解。

新的纳米载体技术有望在通过粘膜输送治疗药物方面取得突破

新的纳米载体技术有望在通过粘膜输送治疗药物方面取得突破

Phoreus Biotech 是下一代肽纳米载体的优质供应商,今天宣布其专有纳米载体技术组合新增一项。 两亲性肽胶囊 (APC) 提供了一种将核酸和治疗剂封装在水溶液中以改善通过粘膜的递送的新方法。 

囊性纤维化 (CF) 是一种遗传性疾病,影响着数以万计的儿童和年轻人,几乎总是会导致严重的健康并发症和寿命大幅缩短。药物治疗的最新进展在解决这种情况方面取得了重大进展 – 然而,将药物成功递送至靶细胞仍然是一个主要挑战。 APC 很可能是更有效地将 CF 疗法输送到肺部的关键。

在与堪萨斯大学医学院进行的研究中,APC 已被证明可以成功到达并穿透囊性纤维化肺组织模型中的顶端表面细胞。由于它们的高表面电荷,APC 可以轻松地穿过患病肺组织产生的多余粘液,这在过去已被证明是 CF 治疗的一个困难障碍。

“这种载体具有作为肺部化合物顶端递送以治疗气道疾病的输送系统的潜力,”堪萨斯大学医学中心研究助理教授,肺,重症监护和睡眠医学的Michael Kim博士说。“我们的实验室目前正在评估APC平台将小分子递送到囊性纤维化人气道上皮细胞中的有效性。

APC在递送过程中为mRNA提供保护,然后最终在细胞内部打开以释放其治疗货物。虽然最初的研究集中在CF上,但这种递送方法有望治疗各种呼吸系统疾病,以及输送穿透口腔,眼部和鼻膜所需的药物。 

APC还具有不被人体免疫系统识别的优点,允许它们用于治疗而不会引发负面的免疫系统反应。还计划进行研究,探索它们在癌症、遗传疾病和其他可用核酸疗法治疗的疾病中的应用。

【赠送参会名额】邀您参加2022生物制药稳定性论坛(杭州)

【赠送参会名额】邀您参加2022生物制药稳定性论坛(杭州)

以重组蛋白、单抗药物、疫苗、基因治疗、细胞治疗等为代表的生物制药是当前世界医药研发的热点和发展方向,但这些生物制药普遍面临不稳定的问题,不仅影响药物的有效性,更会产生包括免疫原性在内的毒副作用。生物药物的稳定性问题直接决定生物药能否成功应用于临床。生物药物稳定性问题的解决需要多学科的紧密协作,包括基础机理研究、工艺开发、制剂开发和质量分析。

本次2022生物制药稳定性论坛将邀请来自国内外企业界、高校、监管部门等生物制药稳定性领域的知名专家、学者汇聚一堂,探讨生物制药稳定性研究发展趋势和新技术热点,共同推动我国生物制药产业的高质量发展!

会议信息

会议时间:2023年3月30日-4月1日

会议地点:浙江杭州圆正·启真酒店(浙江大学紫金港校区附近)


演讲嘉宾

姓名

单位/职务

史力

怡道生物科技(苏州)有限公司董事长

熊长云

艾美疫苗副总裁兼mRNA疫苗生产负责人

于传飞

中国食品药品检定研究院研究员

梁锦锋

浙江省药监局药品审批中心副主任

李威

海军军医大学纳米医学研究室主任,教授

方伟杰

浙江大学药学院研究员

何峰

上海诗健生物科技有限公司首席运营官,联合创始人

李镭

浙江博锐生物制药有限公司研发质量副总监

赵健

昭衍生物质量分析副总经理

舒乐

嘉树医疗科技有限公司副总经理

张鹏

非链应用科学家经理

张志俊

大昌华嘉科学仪器部产品经理

邹敏

浙江大学金华研究院生物药团队理化分析主管

邵倩

浙江大学金华研究院生物药团队药理分析主管

高涵

浙江大学药学院在读博士研究生

景真奕

浙江大学药学院在读硕士研究生

 

论坛主题

1、生物药降解机理研究;

2、生物药稳定性表征方法的开发与应用;

3、新型生物药(如疫苗、细胞疗法等)制剂开发策略;

4、生物药在分析过程中的稳定性。

 

上海金畔生物科技有限公司展示产品

本次论坛上海金畔生物科技有限公司将重点展出Pfanstiehl将高纯度低内毒素注射用糖类及氨基酸等十余种辅料产品。

【赠送参会名额】邀您参加2022生物制药稳定性论坛(杭州)

此外,上海金畔生物科技有限公司还将展出生物制药上下游各环节包括细胞培养、细胞转染、纯化工艺、质量检测、制剂辅料、药物评价、高端仪器和技术服务等全系列产品线。涵盖Pfanstiehl、Applichem、KERRY、Cygnus、KPL、C-LEcta、Mirus等数十个品牌。

 

会议日程

论坛第一天(3月30号)

13:00-17:00

报道注册

 

论坛第二天(3月31号)

8:00-12:00

报道注册

9:10-9:15

开幕式致辞

9:15-12:05 主题报告 主持人:史力

时间

报告题目

报告人

9:15-9:55

mRNA疫苗CMC环节关键质量属性分析

熊长云

9:55-10:35

单抗类药物质量标准的制定

于传飞

10:35-11:05

茶歇及壁展

11:05-11:45

高端制剂转化中的关键物理药剂学原理研究

李威

11:45-12:25

Uncle在蛋白、病毒载体以及脂质纳米粒稳定性考察上的应用

张鹏

午餐

13:30-17:30 主题报告 主持人:方伟杰

13:30-14:10

蛋白医药开发过程中的表征研究

史力

14:10-14:50

从监管机构的角度谈谈生物药制剂和质量分析(待定)

梁锦锋

14:50-15:20

茶歇及壁展

15:20-16:00

待定

何峰

16:00-16:40

生物制剂中不溶性微粒的检测与监测

张志俊

16:40-17:30

圆桌讨论

18:00-20:00

晚宴

 

论坛第三天(4月1号)

9:00-12:10 主题报告 主持人:何峰

时间

报告题目

报告人

9:00-9:40

冻干类生物药制剂在掉落过程的降解研究

方伟杰

9:40-10:20

制剂预开发在蛋白药物可开发性评价中的应用

赵健

10:20-10:50

茶歇及壁展

10:50-11:30

抗体药物参比品的全生命周期管理

李镭

11:30-12:10

生物药药械组合的研究内容

舒乐

午餐

13:10-16:30 主题报告 主持人:方伟杰

13:10-13:40

抗体类药物的纯度分析(暂定)

邹敏

13:40-14:10

生物活性分析方法在抗体生物药研究中的应用(暂定)

邵倩

14:10-14:30

茶歇及壁展

14:30-15:00

高浓度单克隆抗体冻干制剂在临床使用上的问题发现与解决

高涵

15:00-15:30

机械应力对生物药物的影响

景真奕

15:30-16:30

圆桌讨论

参会名额赠送

关注上海金畔生物科技有限公司公众号“jinpanbio”回复“我要报名”,填写表单即有机会获取赠送参会名额。报名时间截止2023年3月27日,名额有限,先到先得

 

上海金畔生物科技有限公司作为一站式生物试剂采购供应商,致力于整合全球优质资源,为生物研究领域客户提供丰富的产品与专业的服务。欢迎拨打上海金畔生物科技有限公司客服电话021-50837765或者登陆网站www.jinpanbio.cn了解更多信息。

邀您参加第九届国际生物药大会暨展览会BioCon Expo 2022 (限量观展名额免费赠送)

BioCon Expo 2022 第九届国际生物药大会暨展览会即将于2022年7月20-22日在杭州国际博览中心盛大开启。本届展会预计将有250余家展商参展,活动将设展示区、15+场细分论坛及开幕式等,围绕生物药多个细分品类(抗体蛋白-单抗/双抗/多抗/ADC/融合蛋白/重组蛋白药物、细胞治疗药物、基因治疗药物、核酸药物、新型疫苗、溶瘤病毒、血液制品、多肽类药物等)从立项BD到市场准入、从监管解析到申报策略、从原液到制剂,从质量分析到工艺开发,从临床前到临床,从CMC到生产供应链,从投融资到人才战略,展开精彩分享与研讨,推动行业的全速发展。

邀您参加第九届国际生物药大会暨展览会BioCon Expo 2022 (限量观展名额免费赠送)

会议信息

会议时间:2022年07月20日-22日

会议地点:中国·杭州·国际博览中心

上海金畔生物科技有限公司展位:E05

同期论坛

邀您参加第九届国际生物药大会暨展览会BioCon Expo 2022 (限量观展名额免费赠送)

上海金畔生物科技有限公司再次受邀参展(展位E05),诚邀各位业内朋友莅临与交流!

免费观展名额赠送:扫码下方海报二维码关注上海金畔生物科技有限公司公众号“jinpanbio”回复“我要报名”,填写表单即有机会获取赠送参会名额。报名时间截止7月8日,名额有限,先到先得!

邀您参加第九届国际生物药大会暨展览会BioCon Expo 2022 (限量观展名额免费赠送)

上海金畔生物科技有限公司将展出丰富产品:

  • 细胞培养–细胞培养基基础成分,超滤植物蛋白胨,复合型细胞培养添加物,支原体预防/清除/检测试剂,无血清细胞冻存液,重组胰酶,泡沫稳定剂等;
  • 转染&药物筛选–CHOgro细胞瞬转系统,GMP级重组病毒生产转染试剂,高通量IgG快速定量检测试剂盒;
  • 纯化工艺–GMP级DENARASE全能核酸酶,药典级生化试剂(如Tris、Bis-tris、氨基酸、尿素等);
  • 质量检测–HCP/HCD残留检测试剂盒,BSA/Protein A/核酸酶等工艺杂质残留检测试剂盒,病毒清除工艺验证试剂盒,免疫检测用抗体/底物;
  • 制剂辅料–高纯度、低内毒素、符合多国药典的注射级药用辅料(包括海藻糖、蔗糖、氨基酸、琥珀酸钠等),多个产品已在CDE备案注册,海藻糖和蔗糖处于激活状态;
  • 药物评价–血药浓度检测试剂盒,药物抗体检测试剂盒;
  • 高端仪器–数字PCR系统;
  • 技术服务–HCP抗体覆盖率验证服务(AAE与质谱方法),工艺专属HCP抗体/试剂盒开发服务。

展出产品涉及Cygnus、Pfanstiehl、Kerry、Applichem、KPL、Mirus、c-LEcta、ValitaCell、达普生物等数十个品牌。

上海金畔生物科技有限公司(Beijing XMJ Scientific Co., Ltd,以下简称上海金畔生物科技有限公司)由留美归国生物领域专业人士创办,专业服务生物制药企业16年,团队在制药原辅料供应领域积累了丰富的经验、熟悉国内外法规要求,除稳定供货外上海金畔生物科技有限公司熟悉并一直为客户提供必要的技术服务、支持文件与使用协调支持,配合国际国内审计并保持优秀审计记录,助力客户终产品顺利上市。

上海金畔生物科技有限公司现已是AppliChem、Kerry、Cygnus、Pfanstiehl、C-LEcta、Seracare等数十个品牌的中国一级代理或一级代理,整合了一条覆盖细胞培养、蛋白纯化、质量检测、制剂辅料等环节的优质产品线,公司自2020年起增加了数字PCR仪等高端仪器设备,可为客户提供一站式服务。

如对会议或者产品感兴趣,欢迎随时拨打上海金畔生物科技有限公司客服热线021-50837765或了解更多信息。